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ABSTRACT:  
 
Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still 
required for the optimal management of young stands. Waveform (WF) recording sensors can provide a more detailed description of 
the vegetation compared to discrete return (DR) systems. Furthermore, knowing the shape of the signal facilitates comparisons be-
tween real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing 
(MCRT) -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the 
classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the 
MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differ-
ences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An 
increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF 
sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing stud-
ies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the 
future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical 
findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland. 

 
1. INTRODUCTION 

 
The capability of small-footprint airborne LiDAR in produc-
ing precise estimates of quantitative forest characteristics is 
well demonstrated (Naesset et al., 2004). A direct outcome 
has been the replacement of traditional field-based inventory 
methods (Maltamo et al., 2011). In Finland, airborne LiDAR, 
combined with aerial images, is used in regional level inven-
tories for operational forest management planning. Currently, 
the inventory of seedling stands is a separate process in the 
field. It would be beneficial, if the wall-to-wall remote sens-
ing (RS) data could be utilized in seedling stands also. The 
most important variables sought are the need and timing of 
silvicultural treatments (weed, insect, and herbivore control, 
clearing to favor the future trees).  
 
Pulsed LiDAR systems send 5–10-ns long, collimated beams 
of laser light towards the target at high frequency. The return-
ing signal is a convolution of the time-dependent function of 
the transmitted pulse power with the target cross-section 
profile and the system response function (Wagner et al., 
2006). Discrete-return (DR) sensors detect echoes from the 
returning pulse (range detection) on-the-fly. Coordinates and 
an intensity measurement are delivered for each echo. Wave-
form (WF) recording systems store a digitized amplitude 
sequence, the waveform, for post processing (Blair et al., 
1994). It is evident that WF data provide a more accurate 
characterization of vegetation. Research of WF data in forest 
applications has focused on deriving more dense point clouds 
by finding additional echoes, or on using radiometric WF 
features for classification tasks.  
 
Operational area-based forest inventories rely on empirical 
dependencies established between the forest variables and 
LiDAR metrics (Packalén and Maltamo, 2007). Theoretical 
simulations, although not completely replacing the need for 
empirical training and validation data, can be useful in e.g. 
studying the effects of acquisition settings on the observed 
LiDAR signal, or in the planning of sampling strategies. In 

addition, simulations allow for testing interpretation algo-
rithms and extending the empirical results. In theory, it is also 
possible to predict forest variables from the LiDAR data 
through the inversion of the simulation model, i.e. to produce 
synthetic training data. Comparison against real data is essen-
tial to verify the correctness of the simulation models, and to 
test their robustness to various parameters and assumptions. 
From the validation point of view, DR systems are ‘black 
boxes’, whereas in WF systems, the shape of the returning 
signal is observed, which facilitates comparisons between 
simulated and real data. Recent studies demonstrate the use 
of Monte Carlo ray tracing (MCRT), combined with explicit 
leaf- or needle-level vegetation models in simulation of opti-
cal RS signals (e.g. Disney et al.,  2006). The MCRT is con-
sidered as one of the most accurate methods for radiative 
transfer modeling in vegetation (Widlowski et al., 2008). 
There have been applications to LiDAR as well (Disney et 
al., 2010; Morsdorf et al., 2009), but comparisons to real data 
are often lacking. 
 
We developed a MCRT simulation model for WF recording 
LiDAR data. The overall aims of our study were related to 
the validation of the model and to the examination of the 
potential of WF data in the mapping of seedling stand vegeta-
tion. Three specific research aims (RA) were formulated: 
 
RA1) To perform quantitative validation of the simulation 
model against real data and test the model sensitivity to vege-
tation parameters. 
 
RA2) To use the simulation model for testing the effects of 
different sensor parameters on the performance of WF data in 
the classification of three selected plant species. 
 
RA3) To study empirical WF signatures for the classification 
of seedling stand vegetation representative of a large number 
of species. 
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2. MATERIALS AND METHODS 
 

2.1 Field reference 
 
The field data in Hyytiälä, Finland (61°50 N, 24°20 E), were 
collected in the summers of 2010 and 2012. Seedling stands 
were chosen to represent variation in stand age and site type 
(Figure 1). Average tree height was 1.5–5 m, but some re-
cently established stands were selected also for sampling of 
low  vegetation.  A  vegetation  sample  refers  to  a  tree  or  a  
circular area containing low vegetation. The tree base or the 
ground at the center of the circle was positioned in 3D with 
Network GNSS at an accuracy of better than 3 cm. Two types 
of sampling schemes were used. In 2010, rectangular plots 
(100–200 m2) were established at subjectively selected loca-
tions. All trees were positioned and recorded for height and 
species. Both in 2010 and 2012, separate vegetation samples 
were collected. The samples include trees and circular sam-
ples of low vegetation (r = 0.5 m in 2010, r = 1.0 m in 2012). 
Maximum height was measured for each sample. A subjec-
tive estimate of the leaf cover (0–100%) was recorded for a 
subset of the 2012 samples.  
 

 
Figure 1. Examples of the selected stands. A 12-year-old 
sowed pine stand on a barren site (left), and a 11-yr-old 
planted spruce with a naturally regenerated broadleaved 
mixture on a fertile site (right). 
 
2.2 LiDAR data 
 
Data from two Leica ALS60 campaigns (15–17 GMT, July 
19, 2010 and 17–19 GMT, July 5, 2012) were used. The data 
include nine datasets differing by acquisition height and WF 
sampling rate (Table 1). The ALS60 sensor operates at  of 
1064 nm. The beam divergence is 0.15 mrad at 1/e, and 0.22 
mrad at 1/e2. Up to four DR echoes can be recorded per 
pulse. An echo consists of target coordinates, and eight-bit 
values for the intensity and the automatic gain control 
(AGC). The returning signal is directed to a separate WF 
sampling unit, and the first DR echo detected triggers the WF 
recording. The continuous 256-ns-long (38 m) WF record 
contained a sample of 5 m that preceded the first echo. Max-
imum scan zenith angle was always 15°.  The WF data were 
recorded for every pulse, except in the datasets of 2010_12_1 
and 2012_05_1 in which every second pulse pair was record-
ed due to data transfer constraints. In the 2012 campaign, the 
peak power of the pulses was adjusted for constant irradiance 
at the ground from all four acquisition heights. Campaign-
level boresight and range calibrations were carried out fol-
lowed by relative strip matching for correcting the roll, pitch 
and height discrepancies. The trajectory data was also availa-
ble, giving the 3D pulse vector. 
  
ALS60 applies the AGC that regulates the receiver gain. To 
account for AGC effects on the signal level, we used a nor-
malization model: 
 

baAGC
II obs

cal 1
  (1) 

 
where Iobs is  the  raw  and  Ical the normalized DR intensity, 
parameter a is a reference AGC value to which raw values 
are normalized, and parameter b gives the increase in signal 
level per unit increase of AGC. The model was applied to the 
WF data by replacing Ical and Iobs with the amplitude values, 
and the whole WF sequence (excluding noise) was then 
normalized using Eq. 1. The value of parameter a was set at 
the average AGC value in each dataset, and optimal values 
for b were searched for by minimizing the nested coefficient 
of variation (CV) of the WF peak amplitude data, using 
homogeneous targets, which covered a range of surface 
reflectivity. Because of small range (R) deviation within the 
datasets, no R normalization was applied. 
 
Table 1. Overview of the LiDAR datasets.  

Dataset 

Mean 
(SD) of R 
in the field 
samples, 

m 

Emitted 
pulse 
width 

(FWHM), 
ns 

WF 
sampling 
rate, ns 

Density 
of 

pulses 
with a 
WF 

record, 
m-2 

2010_12_1 1200 (18) 7.2 1 4.7 
2010_19_1 1957 (23) 7.2 1 2.7 
2010_19_2 1957 (21) 7.2 2 2.8 
2010_30_1 3022 (39) 10.1 1 0.9 
2010_30_2 3021 (38) 10.1 2 0.9 
2012_05_1 522 (17) 7.7 1 5.2 
2012_10_1 1029 (19) 10.1 1 5.2 
2012_20_1 2030 (26) 10.3 1 3.1 
2012_27_1 2787 (33) 10.5 1 2.1 
 
2.3 The simulation model 
 
MCRT simulation: MCRT was used for estimating the ratio 
of scattered radiant intensity towards the receiver [W sr-1] to 
the incident irradiance at target surface [W m-2]  i.e.  the  dif-
ferential scattering cross-section of the target ( , [m2 sr-1]).  
 
Our model works in forward mode i.e. the photon paths 
(rays) are traced from the light source (Gaussian beam) to the 
receiver (Figure 2). For input, geometric-optical representa-
tion of the scene i.e. the coordinates and orientations of the 
scene elements as well as their reflectance ( ) and transmit-
tance ( ) are required. The model solution calls for finding 
intersections of the rays with the scene elements, for which 
bi-Lambertian scattering properties are assumed. If the re-
ceiver is visible from an intersection point, the contribution 
of ray i of scattering order n to the total radiant intensity 
towards the receiver (Ii,n) is calculated from the , view-
zenith angle ( ) in relation to surface normal, and the incident 
power of the ray (Pi,n-1): 
 

1,,
cos

nini PI   (2) 

 
The subsequent scattering order is sampled by sending an 
additional ray (Pi,n), whose direction is randomly generated 
from the bi-Lambertian distribution, and power is obtained by 
multiplying the incident power with the single scattering 
albedo (  + ) of the scene element. The sampling is stopped 
if the ray escapes the scene, or if the predefined number of 
scattering orders is reached. The ‘field of view’ of the receiv-
er is defined as a circular area (r = 2.5 m) at ground (Figure 
2), outside of which rays do not contribute to the observed 
radiant intensity. 
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Figure 2. Illustration of the MCRT sampling scheme. The 
dashed small arrows represent the populations of all possible 
photon paths that are sampled. Note that in reality the receiv-
er and transmitter are at the same location in LiDAR sensors. 
 
By setting the total power of the emitted rays at 1, the output 
from  the  MCRT  is  directly  the  target  . To account for the 
time-dependency of the LiDAR signal,  was binned into 
0.05-ns-long intervals (cross-section profile, (t)) based on 
the lengths of the individual ray paths. We used 30000 rays 
per pulse and 10 scattering orders in the simulations.  
 
Convolution with system WF: To obtain the voltage pattern 
recorded by the instrument, the LiDAR system WF was 
convoluted with the simulated (t)  (Eq.  7).  The  formula  is  
derived as follows. The instrument emits light at power Pe(t) 
[W]. The instantaneous irradiance at target [W m-2] is ob-
tained by multiplying Pe(t) with the atmospheric attenuation 
factor ( atm, [unitless]) and by dividing with the target surface 
area (A, [m2]). The radiant intensity towards the receiver (I(t), 
[W sr-1]) is then the convolution of the irradiance with (t) 
[m2 sr-1]: 
 

t
A

tP
tI eatm   (3) 

 
The power observed by the receiver (Po(t), [W]) is obtained 
from I(t) by multiplying it with atm and the solid angle sub-
tended by the receiver ( D2/4R2, [sr]): 
 

2

2

4R
D

tItP atmo
  (4) 

 
The voltage recorded by the instrument (Vo(t), [digital num-
ber, unitless]) is obtained by convoluting Po(t)  with the sys-
tem response function ( (t), [unitless]), multiplying with the 
system  gain  (g, [W-1])  and  adding  a  noise  term  (c, [digital 
number, unitless]): 
 

cttPgtV oo   (5) 
 
We call the combined effect of the instrument gain, emitted 
power, target surface area, atmospheric attenuation, receiver 
aperture, and the system response function the system wave-
form (S(t), [unitless]): 
 

tD
A
tPgtS atm

e

4

2
2   (6) 

 
By substituting S(t) into Eq. 5 and rearranging the terms, the 
final equation for Vo(t) becomes: 

 

c
R

ttStVo 2

1   (7) 

 
Eq. 7 allows for the derivation of the LiDAR signal from the 
MCRT solution, when S(t) and c are known. In the simula-
tions, V0(t)  was  re-sampled  at  the  given  WF  sampling  rate,  
and the individual samples were rounded to nearest integer 
values. To simulate the ranging process correctly, needed in 
the comparison of simulated and real echo heights, an echo 
detection algorithm (constant fraction discriminator), similar 
as in real Leica ALS60 data, was applied.  
 
Model calibration: The S(t) was assumed constant over an 
acquisition. The ALS60 does not record the emitted WF, and 
thus, for determining S(t), we had to rely on the detected WFs 
from well-defined surfaces of known reflectance. Because of 
the small scan-zenith angle (<15°) and planar calibration 
surfaces, the (t) was assumed a unique value, and the convo-
lution simplified to multiplication. Thus, the S(t) was solved 
from Eq. 7: 
 

2RctVtS o   (8) 

 
Calibration targets were 5×5-m tarpaulin reflectance tarps, 
and asphalt and fine sand surfaces. Hemisherical-directional 
reflectance factors (HDRF) relative to Spectralon® reference 
panel, measured in nadir view under solar illumination, were 
used for the determination of  for each target. Three tarps 
(HDRF 0.14, 0.21, 0.41), asphalt (0.21), and sand (0.34) were 
used for the calibration of the 2010 LiDAR data. In 2012, the 
tarps were not available, and only the asphalt and sand were 
used. WFs from the calibration targets were normalized for 
the AGC (Eq. 1) and re-sampled at 0.05 ns by linear interpo-
lation. Eq. 8 was then applied separately to each re-sampled 
WF, and the final estimate of S(t) was obtained by averaging 
over all pulses and targets. The mean and SD of the noise (c) 
in  each  dataset  was  also  estimated,  using  tails  of  the  same  
pulses.  
 
2.4 Geometric-optical vegetation models 
 
Three common seedling stand species were selected, namely 
silver  birch  (Betula pendula Roth), raspberry (Rubus idaeus 
L.),  and  fireweed  (Epilobium angustifolium L.) (Figure 3). 
Geometric-optical representations of these were created, 
using empirical regression models of the shoot or branch 
structure, digitized leaf shapes, and leaf optical properties 
from literature. Leaf inclination angles were generated, using 
theoretical leaf angle distributions (LAD) (Weiss et al., 
2004). A 6×6-m area was simulated at a time. An individual 
birch was placed in the middle. In the case of raspberry and 
fireweed, the number of shoots was adjusted to obtain a given 
leaf area index (LAI), and the area was then filled with shoots 
at random locations. The ground was modeled as a planar 
surface with a  of 0.30. 
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Figure 3. Geometric-optical vegetation models. A 3-m-high 
birch, individual raspberry and fireweed shoots, and a 6×6-m 
area of fireweed and raspberry canopies. 
 
2.5 Data analyses 
 
Validation and sensitivity analysis of the simulation mod-
el: The datasets 2010_12_1, 2012_05_1, 2012_10_1, 
2012_20_1, and 2012_27_1 were used to validate the simula-
tion model. Pulses that had intersected a field sample were 
selected, and simulations were performed, using the same 
scan/pulse geometry and vegetation height as in the real data. 
The WF sampling rate was 1 ns, and the beam divergence 
0.15 mrad. The height histograms of the detected first echoes, 
and WF feature distribution metrics were compared between 
the simulated and real observations. In addition to echo 
height (H), radiometric features were extracted for the first 
return in a pulse. They were the number of peaks within an 
echo (Npeaks), peak amplitude (A), full width at half maximum 
(W), and the total energy (E). To test the model sensitivity to 
vegetation parameters, A data from the simulated birch 
crowns (S(t) from 2010_12_1, nadir scanning, R =  1200  m)  
were examined. Mean leaf inclination angle, leaf  and , and 
the total leaf area were the investigated parameters. 
 
Effects of sensor parameters on the species classification 
accuracy: Effects of footprint size, WF sampling rate, and 
the width of the emitted pulse on species classification accu-
racy were studied for the three modeled species. Flying 
height was constant at 1200 m, and the scan zenith angle 
varied randomly from 0° to 15°. The S(t) of the 2010_12_1 
dataset, 1 ns sampling rate, and beam divergence of 0.15 
mrad (approx. 0.18 m footprint) were used as the default. One 
parameter was altered at a time, and 500 pulses were simulat-
ed with each parameter configuration. The simulated first 
echo data were classified, using linear discriminant analysis 
(LDA) and features A, W and E. The classification was per-
formed for individual pulses and for five-pulse samples 
(mean features per sample), referred to as ‘1-pulse’ and ‘5-
pulse’ data, respectively.  
 
Analyses of real data for vegetation classification: Pulses 
that had produced a single echo within a field sample were 
selected. For trees, echoes below 1 m were excluded, as well 
as trees shorter than 1.5 m. The WF features for the selected 
echoes were analyzed. The species or species groups with 
less than 30 pulses were left out. In total, 28 species or spe-
cies groups fulfilling the criterion were found. The data were 
divided into operational classes, important from the silvicul-
tural viewpoint. These were 1) conifers, 2) broadleaved trees, 
3) low vegetation (green), and 4) low vegetation (barren) + 
abiotic material. Classification was carried out with LDA, 

using radiometric features E, A, and W, each of them sepa-
rately, and in different combinations. The classification was 
performed for individual pulses and for vegetation samples 
(mean features per sample), referred to as ‘individual-pulse’ 
and ‘mean-of-sample’ data, respectively. 
 
 

3 RESULTS AND DISCUSSION 
 
3.1 Validation and sensitivity analysis of the simulator 
 
The height histograms of the simulated echoes were generally 
in good agreement with the real data (Figure 4), especially for 
birch, although there was an overestimation of mean H by 
0.15–0.45 m. For the other species, the mean H was simulat-
ed with reasonable accuracy, but the standard deviation (SD) 
was underestimated towards the highest flying altitudes. This 
can be due to the spatial distribution of the individual shoots, 
which in reality probably is more clumped at the scale of the 
largest footprints. 
 

 
Figure 4. Real and simulated echo height histograms for 2.5–
5-m-high birch trees in the 2010_12_1 dataset. 
 
Generally, the characteristics of the radiometric WF features 
were well reproduced in the simulations (Figure 5). The 
relative interspecies order of the mean A, W and E was pre-
served. The largest differences were observed for A and E of 
the birch in datasets 2010_12_1 and 2012_27_1, in which 
simulations produced 13–19% underestimations. The Npeaks 
was overestimated for birch in all datasets by 25–35%, which 
is most probably caused by the vertical gap between the 
crown base and the ground in the birch model (Figure 3). In 
reality,  the gap is  filled with grasses and small  seedlings.  In 
addition, there were small differences in the SD of some of 
the features (especially A and E) between simulated and real 
data. These differences varied with footprint size, which 
could be associated with the differences in the structure of the 
real and modeled plants at the footprint scale.  
 
The model was sensitive especially to leaf inclination angle. 
Leaf area had also an effect, and a similar response to field-
measured leaf cover estimates was observed in empirical 
data, suggesting that the model behavior was logical. Effects 
of leaf  or  were smaller compared to leaf angle and -area. 
The examined  and  values (0.4–0.5) were typical for green 
vegetation in the  of 1064 nm. 
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Figure 5. Examples of simulated and real mean WF features in the 2012_10_1 dataset. The whiskers denote standard deviation. 
 
Absolute validation of MCRT models is difficult, because the 
effects of the radiative transfer model, vegetation models, and 
the sensor response cannot be separated from each other. 
Qualitative comparisons of real and simulated LiDAR data 
have been reported for space-borne instruments (North et al., 
2010), but to our knowledge, quantitative comparisons for 
small-footprint airborne LiDAR have not been reported 
before. Our model has some uncertainties, which are related 
to possible errors in the vegetation modeling, exclusion of 
wave phenomena (interference, diffraction), improper 
knowledge on the scattering characteristics of the calibration 
targets in the hot-spot geometry, and to the simplified sensor 
model. In spite of the uncertainties, the results are promising 
and can serve as basis for attempts to calibrate and validate 
simulation models so that they could be used e.g. in planning 
of LiDAR acquisitions (Disney et al., 2010). 
 
The computational burden is important from the practical 
point of view. The simulation times in the modeled vegeta-
tion were 10–40 s per pulse on a standard desktop computer 
(Win7, 16 GB RAM, 3.33 GHz CPU). However, our algo-
rithms were 'home-made' and not optimized, because the 
theoretical correctness was in the main focus. In addition to 
feasible computation times, the vegetation models should be 
readily available. Modeling environments already exist that 
could provide the input for MCRT models (e.g. Perttunen et 
al., 1998). Terrestrial laser scanning could be utilized as well. 
Independent of the method, the vegetation models should be 
accurate for the study area in question, or alternatively, the 
scattering model should be robust to the vegetation parame-
ters. Improvement in the accuracy vegetation models can be 
expected, as interest towards computationally intensive mod-
eling methods increases, and measurement data of required 
input parameters is accumulating. 
 
3.2 Effects of sensor parameters on the species classifica-
tion accuracy 
 
Figure 6 shows the effect of the three investigated parameters 
on the overall classification accuracy of the modeled species. 
In general, and as expected, a higher performance was ob-
tained with the less noisy 5-pulse mean features compared to 
individual pulse features. Classification accuracy even 
reached 100% with the largest simulated footprints. The three 
species differ quite clearly in structure, which partly explains 
the good classification performance. The classification accu-
racies were high also in the real data for the tree species 
studied. 

Low classification accuracies were associated with small 
footprints, and the accuracy saturated after approx. 0.3 mrad 
(0.36 m). Response to the varying pulse width was less ap-
parent compared to the footprint size. Further examination 
revealed  that,  while  an  increase  in  pulse  width  reduces  the  

intraspecies variation in the WF features, it also diminishes 
the interspecies differences in the mean features. Sampling 
rate did not considerably affect the classification accuracy, 
although a small decrease was observed with 3–4 ns sampling 
in the 5-pulse data. The results indicate, that very small foot-
print should be avoided if vegetation classification is aimed 
at. On the other hand, it appears that a 2-ns sampling rate 
suffices and this would reduce the storage and data transfer 
needs. The results can be different if more complex vegeta-
tion is examined or different feature extraction procedures 
e.g. by Gaussian decomposition (Wagner et al., 2006) are 
implemented. Based on results here and in the Section 3.1 
(different behavior of WF features with varying footprint 
size), we see possibilities in data that combines different 
footprint sizes for an enhanced classification. We propose 
research in this topic, not only in seedling stands but also for 
taller vegetation. 

 
Figure 6. Effects of sensor parameters on the overall classifi-
cation accuracy in simulated birch, raspberry and fireweed 
vegetation. The x axis is linear and the range from zero to the 
maximal values is shown. 
 
3.3 Analyses of real data for vegetation classification 
 
The classification was first performed for the individual-pulse 
data. Using E and A together gave the best performance in 
almost all datasets (overall accuracy 68.1–86.7%, Table 2). 
Adding W improved the results marginally (<1 percentage 
points) in some of the datasets. Secondly, classification was 
repeated for mean-of-sample data, using the E and A features. 
Accuracies were improved in the 2010 data, but not in the 
2012 data. Because of the larger sample size for low vegeta-
tion in 2012 data, the low vegetation classes were overrepre-
sented in the individual-pulse data. They were also the easiest 
to classify. Thus, the overall accuracy did not improve by 
using mean-of-sample data. Adding maximum echo height 
within a sample increased the overall accuracy by 0.4–7.8 
percentage points. We expected a better separation of green 
low vegetation from trees, but that was not observed. Reason 
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for this is probably that LiDAR underestimates the height of 
small trees considerably, and thus the echoes from tree 
crowns are still confused with low vegetation. 
 
Table 2. Overall classification accuracy (%) and kappa in 
LDA classification of four vegetation types. Features used 
were the peak amplitude and total echo energy. 

Dataset 

Individual-
pulse  Mean-of-sample 

C
or

re
ct

-
%

 

K
ap

pa
 

 C
or

re
ct

-
%

 

K
ap

pa
 

Pu
ls

es
 

pe
r 

sa
m

-
pl

e 

2010_12_1 68.1 0.51  74.9 0.59 3.1 
2010_19_1 75.7 0.62  77.2 0.62 2.2 
2010_19_2 71.3 0.54  77.0 0.62 2.5 
2010_30_1 75.3 0.57  77.1 0.60 1.4 
2010_30_2 72.5 0.50  73.8 0.52 1.5 
2012_05_1 76.1 0.66  75.6 0.67 8.7 
2012_10_1 83.1 0.76  83.3 0.77 9.7 
2012_20_1 85.4 0.79  84.2 0.78 5.9 
2012_27_1 86.7 0.80  84.8 0.79 4.6 

 
The classification accuracies reported here were slightly 
better than obtained by Korpela et al. (2008) with similar 
vegetation, using DR LiDAR and high-resolution aerial 
images. Because we restricted to the basic pulse-vegetation 
phenomena, we propose further studies in the practical use of 
the WF data in seedling stand inventory (design of interpreta-
tion techniques at the plot and stand levels). These studies 
could include also enhanced DEM estimation through usage 
of echo width features. 
 
 

4 CONCLUSIONS 
 
We presented a simulation model that integrates a sensor 
model and radiative transfer modeling in order to simulate 
LiDAR  signals  that  are  comparable  to  real  data.  Results  on  
the model validation imply that the species-specific WF 
features can be simulated with the model, using literature 
information on the reflective properties of vegetation and 
simple measurements and models about the plant structure. 
This makes the model an excellent tool that extends empirical 
research e.g. when studying WF data for classification tasks. 
Future work could include repeating the validation procedure 
presented here with different kinds of vegetation, and with 
more accurate measurements of the calibration targets as well 
as the of vegetation parameters. The goal in the long time 
horizon is to develop simulation tools that can be utilized e.g. 
in planning LiDAR acquisitions, and possibly even used to 
produce synthetic training data. Another motivation for the 
study was to explore the potential of WF LiDAR data in the 
classification of seedling stand vegetation. The question is 
important, because no fully automated detection method for 
the silvicultural treatment need has been developed. Here, the 
WF signal was studied at pulse level. In the future, the analy-
sis can be augmented to plot or forest stand level in order to 
develop practically usable inventory methods. 
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