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ABSTRACT:

In this paper we present a novel approach for 3D reconstruction of point clouds based on single baseline Multi-Aspect InSAR (MASAR)
data. The point clouds represent an intermediate result to achieve a comprehensive building reconstruction framework. The exact
determination of scatterers based on SAR data is a non-trivial task since the optimal solution requires the knowledge of the number
of scatterers within one range cell. In recent years many methods were proposed addressing this problem but most of them require
multiple observations making them inapplicable to our task. We use a Probabilistic Graphical Model (PGM) to combine all aspects
into a common framework exploiting all contradictions and redundancy in the data. The model is used iteratively together with local
optimizations adjusting the hypothesis of the scatterer within one range cell to the corresponding observation. This makes it possible
to find a global solution.

1 INTRODUCTION

In recent years much effort was done in the analysis of urban ar-
eas by remote sensing techniques. Buildings are an integral part
of every human settlement and therefore building reconstruction
is one of the most important parts of a comprehensive urban anal-
ysis system. A detailed knowledge of buildings substantially sup-
ports the planning of emergency response or urban management
in general. Nowadays most of the data used for this task is ac-
quired by laser scanners due to their high accuracy. In the recent
developments these scanners are not directed in nadir direction
but with a significant elevation. This setup allows to capture also
the facades of the buildings allowing for a full 3D reconstruction.
But as a drawback some areas residing behind the buildings are
shadowed. To overcome this limitation it is necessary to use ac-
quisitions from multiple, orthogonal aspects with a subsequent
coregistration (Hebel and Stilla, 2007). In SAR imagery the ele-
vation is always given due to the sidelooking geometry. Therefore
it is strictly necessary to use MASAR data for a full description
of the scene. It has been shown that decimeter resolution SAR
imagery has great potentials to contribute to urban scene analysis
(Stilla et al., 2005), (Brenner and Roessing, 2008). There are al-
ready some approaches working on MASAR data (Bolter, 2001),
(Thiele et al., 2007a), (Schmitt and Stilla, 2011).
In this work however we want to investigate a general framework
using all context available to obtain a posterior estimation of the
scatter locations. We use PGMs as a declarative representation to
encode our MASAR domain.

2 PROBABILISTIC FRAMEWORK FOR MASAR DATA

The general problem of the estimation of scatterer along the ele-
vation profile is thoroughly investigated (Zhu and Bamler, 2010),
(Schmitt and Stilla, 2013). Since the number of available mea-
surements is generally limited the estimation problem is ill-posed
introducing the need to add further constraints on the solution. In
the context compressive based SAR tomography the solution is
achieved by using the reconstruction method LASSO (Tibshirani,
1996):

x̂ = arg min
x
‖y −Ax‖2 + λ‖x‖1. (1)

Figure 1: Factor graph that correspond to Eq. 3. Empty circles
depict variables xi, i ∈ [L] and squares are representatives of
factors. Filled circles represent the observations yj , j ∈ [N ].
They are often directly included in the factors. The factorized
structure of Eq. 4 is obviously represented by this bipartite graph.
Nonzero entries in A correspond to edges in the graph.

where y is a N -dimensional measurement vector, A an N × L
transformation matrix and x the L-dimensional discrete reflec-
tivity profile. The Lagrange multiplier λ depends on the number
of nonzero entries in x which represent the scatterers along the
elevation profile. The determination of the correct value of λ is
subject to active research. In some cases λ is set to the noise
threshold but there are also other methods like GCV or L-curve
(Batu and Cetin, 2011). Besides the methods found in the context
of TomoSAR there are also graphical model approaches to such
reconstruction problems (Montanari, 2012). These approaches
find solutions by maximizing a joint probability distribution on
(x,y) which are generally of the form

p(x,y) = p(y|x) p(x). (2)

The conditional distribution p(y|x) is the likelihood term, a data
driven ... which includes the noise process/model. The prior dis-
tribution p(x) on the other hand encodes some information and
model knowledge e.g. the sparsity property within the compres-
sive sensing. In the case of Gaussian distribution with zero mean
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and variance σ−1, the solution is the MAP estimate

ŷ = arg max
y

p(x|y) (3)

p(x|y) =
1

Z(y)

N∏
i=1

exp
(
−σ

2
(yi −Ai,·x)2

)
p(x) (4)

where Ai,· is the i-th row of A and Z(y) ensures that p(x|y) is a
proper density. Despite the explicit expression of the posterior the
computation of expectations or marginals of it is in general very
complicate due to the fact, that any pair of variables from the set
{xi}, i ∈ [L] is conditionally dependent given any yk, k ∈ [N ].
The MAP solution factorizes nicely and can conveniently be de-
scribed by a factor graph, which in this case is a bipartite graph,
exploiting the structure of the formula clearly. This is depicted in
Fig. 1.
A drawback of graphical models is that efficient inference algo-
rithms exists only for discrete or Gaussian variables. Since in the
presented estimation the variables are not within one of these cat-
egories some further developments were necessary. A new mes-
saging framework called Approximate Message Passing (AMP)
was introduced by (Donoho et al., 2009). As the name suggests
the algorithm uses approximations in the sense, that for the large
limit N,L → ∞, the sum of many distributions is well approx-
imated by a Gaussian. This procedure was expanded to complex
valued variables by (Maleki et al., 2013 (in Press)) and is known
as Complex Approximate Message Passing (CAMP).

2.1 Aspect Fusion and Graph Topology

The aim of the paper is not to investigate in new optimization
procedures but to show how the MASAR domain can be modeled
effectively in terms of graphical models. In order to introduce our
concept consider a general factor graph G = (V,Φ, E) with V
a set of variable nodes, F a set of factor nodes and the edges
E connecting variables with factors. A conditional random field
(CRF) encodes a conditional distribution as follows:

p(x|y) =
1

Z(y)
p̃(x,y) (5)

p̃(x,y) =

m∏
i=1

Φi(Di) (6)

where Z(y) =
∑

x
p̃(x,y) is so called the partition function.

Factors Φ and cliques D are explained in more detail in the next
section. At this point it is worth to emphasize that the CRF rep-
resentation avoids the encoding of the distribution of y. This is a
advantage because in most cases it might be even impossible to
derive a proper and descriptive distribution for the measurements
due to the very complex interrelationships between them.

In our domain a variable v ∈ V represents a scatterer in the
scene. A typical scene is depicted in in Fig. 2. One can see that
there are three scatterer in every elevation profile and that they
share a common point, which is at the intersection of the eleva-
tion profiles. Obviously the measurements made in both acqui-
sitions are dependent on each other. Graphical models enable to
take this easily into account. Dependencies in graphical models
are expressed by the factors Φ. Any subset of variables, which
are constrained to each other, are attached to a single factor and
this subset is then called a clique. As an example a factor is intro-
duced for every measurement connecting all variables of one el-
evation profile to the measurement. Thus these factors represent
the likelihood. Although we aim to estimate the correct scatter
location and amplitudes the underlying structure of our problem

Figure 2: Three dimensional sketch of the intersection of mul-
tiple elevation profiles from different aspects. Obviously both
measurments share a common scatterer. This way the aspects are
not independent from each other. The corresponding structure in
terms of the graph topology is shown in Fig. 3.

statement is completely different from the standard TomoSAR.
In the MASAR domain we have obviously more evidence to es-
timation of the scatter locations than just a single measurement
yet we do not have a stack of observations originating from the
very same scatterer. The implication is that we cannot built up a
dense system matrix A complying with the Restricted Isometry
Property (RIP). Instead we would have a larger matrix which is
sparse. The increase in size stems from the fact that the domain
of the system matrix A has increased to all scatterer in the scene.
This prevents us from using powerful and well known spectral
methods. For the same reasons we are also not able to apply the
CAMP method. The sparse nature of the problem violates the
large limit assumption that messages can be approximated with
Gaussian densities within an tolerable error bound.
In general PGMs are an appropriate framework for sparse prob-
lems with complex interrelations between random variables. Their
ability to encode conditional independencies very effective makes
them a powerful tool. A typical graph topology of the MASAR
domain is shown in Fig. 3. In our model we generate a set of
variables for every aspect separately. This means, that a common
scatterer as indicated in Fig. 2 is represented by multiple vari-
ables and not by just one. The reason for this is an increase in
flexibility of the model if e.g. a point is not visible in every as-
pect. Of course the variables exhibiting are small pairwise spatial
distance should be clustered to share a common behaviour. This
is explained later in the next section.

2.2 Features

As stated in the previous section the dependencies between vari-
ables of subsets of V are expressed in terms of factors. One way
to represent the factor is the log-linear model

Φi(D) = exp(−βifi(D)) (7)

where fi(D) is a feature over a subset D of variables and βi a
weighting factor controlling the influence. In a slightly differ-
ent setup fi can be interpreted as energy function. This section
presents the different feature used to compose the joint probabil-
ity of the MASAR domain.
It was already mentioned that graphical models are restricted to
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Figure 3: Sparse graph topology for the MASAR domain. The
red lines indicate the edges of the scatterer (variable) which con-
nects two observations from different aspects (denoted by the su-
perscript). Note that this graph would correspond to a sparse sys-
tem matrix A.

discrete or Gaussian variables for practical use. The preceding
section explained why it is not possible in this problem statement
to introduce approximations to overcome these limitations. The
general way of setting up a graphical model with discrete vari-
ables is to define a set of states θ for every v ∈ V . Assume that
every variable v ∈ V has a set of attached states θ = {θ0, ..., θn}
where every state θi = (ai, ρi) is a tuple comprised by the pa-
rameters a as the amplitude of the scatterer and ρ as its interfero-
metric phase or position. Since some scatterer might be nonexist-
ing there is a null state θ0 attached to every variable. We define
M scatterers per elevation profile thus we can resolve up to M
scatterers per range cell.

2.2.1 Measurement likelihood At first we introduce the data
term of the model which is the likelihood. Let N

(k)
i be the set of

scatterer which belong to an observation i in aspect k. Taking a
look at Fig. 2 these are just the points along the elevation profiles.
The feature is given by

fd(D = N
(k)
i |y(k)

i ) = ‖
∑

j∈N (k)
i

â(j) exp(jρ̂(j))− y(k)
i ‖22 (8)

where θ(j) = (â(j), ρ̂(j)) is the current state of variable j. With
this formulation we use the underlying assumption of a Gaussian
distribution. This factor is introduced for every measurement in
all aspects.

2.2.2 Sparsity The main objective on the quality of the solu-
tion is its sparsity and we prefer solutions with as few scatterers
as necessary. In mathematical notation this would imply to min-
imize the L0-norm which is infeasible. Instead, similar to stan-
dard CS, we use the L1-norm as an approximation (Tibshirani,
1996). For every variable v ∈ V we insert a new factor accord-
ing to

fs(D = v) = |â|. (9)

into the graph. Concerning just a single variable this factor has
a precedence for scatterers with small amplitudes which globally
tends to produce solutions with only a few scatterers.

2.2.3 Spatial smoothness In most cases we prefer solutions
which are in a certain sense simple. By this we mean solutions
where points compose finite planes. Let Bk(vi) be the set of the
k nearest variables of vi with respect to the euclidean or Maha-
lanobis distance. A new factor is generated for every element
of Bk(vi) and vi. This factor tries to minimize the L1-norm of
the horizontal and vertical distance, defined by dh(vi, vj) and

dv(vi, vj) respectively. In our setup we used this simple model
but this can easily be enhanced by first estimating a common
plane with e.g. PCA and then using a corresponding coordinate
system.

fp(D = {vi, vj}) = g(αvdv(vi, vj) + αhdh(vi, vj)) (10)

Not that the position of the scatterer can be inferred from the
phase ρ and the acquisition geometry such that we simply write
d(vi, vj) to indicate the distance between two variables. It is im-
portant to allow discontinuities in the spatial domain as they occur
frequently in urban areas e.g. on the transition from roof to fa-
cade. Therefore we use a bounded or truncated function g which
limits the maximum penalty value e.g. the truncated quadratic
potential function g(x) ≡ gγ(x) = min{γ, x2}. Furthermore it
is important to normalize fp(D) by the cardinality of Bk(vi).

2.3 Local Optimizations

As stated above the variables in a PGM are often discrete for
practical reasons. This is a clear limitation considering the 3d
reconstruction task. One solution would be to apply a very fine
sampling of continuous variables but unfortunately the complex-
ity of the PGM is exponential in the cardinality of its variables.
To overcome these limitation we propose an iterative approach
where we introduce new states for the variables and thus mimic
the continuous nature. What we want to achieve is to adjust the
variables in the way that they can reproduce the measurement.
Assume that M (k)

i,j is the set of variables which contribute to the
measurement in aspect k at azimuth position i and range j. Let
I
(k)
i,j be an index set addressing all variables of M (k)

i,j which pre-
dicted state is distinct from the null state θ0. Then it is possible
to reconstruct the observation by

ỹ
(a)
i,j =

∑
p∈I (a)

i,j

â(p) exp(jρ̂(p)). (11)

In cases the states θi are not properly defined, this reconstruction
differs from the true observation. To allow the model to approx-
imate the true observation in the next iteration we generate a set
of improvements for the current states. Since the number of vari-
ables as well as their states are known we can use an estimation
scheme without unknowns that just aims at adjusting the incon-
sistencies among the observations. In this case we use a strict
Gauss-Helmert model. Our equation which should be fulfilled is

f(θ) = ‖y − aTρ‖22 = 0 (12)

constrained to a ≥ 0. After this computation we generate for
every variable a new set of states composed of the null state, the
current state and the newly generated state as a new hypothesis.
Additionally we append also a new state generated from the posi-
tions of the local neighbourhood. This state serves as an opponent
to the state obtained from the adjustment since it is more based
on the prior of the variables than on the measurements.
It is the task of the inference algorithm to choose the most proper
state as a new prediction. Using the iterative scheme we can gen-
erate a continuous solution space from discrete variables where
the solution evolves over the time. Note that we use local opti-
mizations on a global state in order to generate a global solution.
The workflow of out approach is depicted in Fig. 4. Furthermore
we can control the adjustment by providing weights for all obser-
vations we want to adjust. This way we can control the amount
of improvement for every observed variable. The weights can be
inferred from the local neighbourhood. A low fp(vi, vj) for ev-
ery vj ∈ Bk(vi) according to Eq. (10) is an indicator for a high
reliability. Of course, it should not be modified more than other
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Figure 4: Workflow of the presented approach. The computa-
tion is divided into global and local parts. Whereas the inference
computes the MAP based on the global parametrization of the
graph G, the adjustment performs only a local operation based
on the predicted states on the variables V and the corresponding
observations Y . The iterations continues until a stop criterion is
reached but in our experiments the number of iterations was fixed
and chosen to be large enough.

points with a smaller support on their neighbourhood.

3 SIMULATION RESULTS

The presented method is evaluated on simulated single-pass In-
SAR data according to (Thiele et al., 2007b). The scene with an
extend of 80 m × 80 m contains two simple cubes as represen-
tative primitives for a building. The lower building block has a
height of 12 m and the the other one 20 m. The sensor is at a
height of 700 m and the slant range to the scene center is 1237 m.
The baseline is B = 5.5 cm with an inclination of α = 50◦. The
SAR system operates in the Ka-Band with a center frequency of
35 GHz. The initial scatter position are placed randomly along
their elevation profiles. This ensures that the state is not initial-
ized nearby a local maximum in the search space. The resolution
is approximately 5 m in range and azimuth. As inference method
we use the Tree Reweighted Belief Propagation (TRWBP) algo-
rithm which belongs to the family of message passing inference
methods (Wainwright et al., 2003).
All scatterers were simulated with an amplitude uniformly dis-
tributed between 0.8 and 1.0. The maximum number of scatterers
per range cell were set to M = 4. The reconstruction result for a
SNR = 20 dB is shown in Fig. 5.

4 DISCUSSION

In the reconstruction result one can clearly recognize the build-
ing. Although the heights are not reconstructed exactly one can
clearly see the transition from the building to the ground and even
from the higher to the lower part of the building. The result seems

Figure 5: Reconstruction result obtained after 10 iterations with
SNR = 20dB. The color encodes the height of the scatterers. The
walls are visualized by surfaces although this might hide some
scatterers which are located slightly behind the wall. The scene
was illuminated from all four directions such that a wall is only
visible in one aspect. Note that the resolution of 5m × 5m is
quite low. Note also that the points on the facades belong to just
one aspect. This implies that here the point density is four times
lower than in areas visible in all aspects.

to be promising for further research and investigation. Note es-
pecially the scatterers on the facades of the building. This indi-
cates that the approach is indeed able to resolve multiple scatterer
in a range cell. Of course, a numerical evaluation of the accu-
racy should be subject to further analysis in the future. The fact
that the occasionally distributed scatterers over the ground are not
aligned to the common height might be caused by the discontinu-
ity preserving behaviour of the model.

5 CONCLUSIONS

This paper presented a novel approach for layover separation and
scatter estimation based on the fusion of multi aspect InSAR data.
The method has proven to work well on simulated data. As next
step the approach needs to be evaluated on real data. This would
be done in the future on data containing an urban scene in Mu-
nich. Although the method seems to be robust there are many
parameters which have to be tuned carefully. Until now there is
no comprehensive understanding on the effects of the parameters.
This is also subject to further research and numerical evaluation.
There are also many open issues concerning the speed of conver-
gence and the initialization of the initial states. Furthermore the
presented approach is just an intermediate step towards a compre-
hensive building reconstruction system which includes high level
models. The next step would be to include geometrical primitives
e.g. planes or cubes as simple primitives buildings are build from.
These primitives have to be included into the reconstruction pro-
cess which could be done via the EM-algorithm.
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