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ABSTRACT:

Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control.
Ship monitoring systems based on Synthetic-aperture Radar (SAR) satellite images are operational. On SAR images the ships made
of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is
independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service.
Vessel detection from spaceborne optical images (VDSOI) can extend the SAR based systems by providing more frequent revisit
times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation). Optical
satellite images (OSI) can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type
classification. The human interpretation of an optical image is also easier than as of SAR image.
In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the
computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses
simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and
scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution.
The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width) and heading of the
vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000×16000
pixels image) on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

1 INTRODUCTION

Monitoring the marine vessels is crucial for increasing the safety
and security of the maritime traffic and preventing illegal activ-
ities on the waters, e.g. illegal fishery, pollution, immigration,
smuggling and piracy. The larger vessels are equipped with the
Automatic Identification System (AIS), which transmits the loca-
tion of the ship to the center via radio communication. Beside
this collaborating monitor system remote sensing based systems
are also used. To detect illegal activities it is important to locate
the vessels also without functioning AIS. The AIS might be pur-
posely switched off, defected or simply a smaller vessel (e.g. sail
boat, fishing boat) is not equipped with this system.

Vessel and pollution detection systems based on Synthetic-aperture
Radar (SAR) satellite images are operational (e.g. the CleanSeaNet
Program of the EUROPEAN MARITIME SAFETY AGENCY,
EMSA) 1. The paper (Greidanus et al., 2004) describes a bench-
marking of operational SAR vessel detection methods. The paper
(Brusch et al., 2011) describes ship detection with the TerraSAR-
X satellite. The characteristics of SAR images enable reliable op-
erations also by rainy and cloudy weather independent from the
sun light conditions. Since the vessels are typically made of metal
and their structure contains sharp edges they reflect the radar rays
intensively, thus on the SAR images the vessels on open waters
are bright dots and edges. Beside these ideal properties of SAR
images, they have some disadvantages, e.g. the spatial resolution
and the revisiting times are limited. It is difficult to detect a vessel
below 15 meters length.

Vessel detection on optical satellite images (VDOSI) can extend
the SAR based systems. Optical satellite images (OSI) can have
a higher spatial resolution, thus enabling the detection of smaller
vessels and enhancing the vessel type classification. The human
interpretation of an optical image is easier than as of a SAR image

1http://emsa.europa.eu/operations/cleanseanet.html

(e.g. for a large vessel its name can be read from the side of
the ship). The tasking of an optical satellite is more agile as of
a SAR satellite. The drawback of optical satellites is that they
heavily depend on the weather and they can work only during
daytime. Because of these reasons their image production is less
reliable, but they can be tasked more agile by using different off-
nadir angles. Optical satellites combined with SAR satellites can
provide a more frequent monitoring.

The VDOSI is still a challenging task, specially for small vessels.
In many cases the visual appearance of background objects (e.g.
rocks, shore, port, waves) is very similar to the vessels. This
makes the correct classification difficult. The vessels have a high
variety in both shape (e.g. fishing boat, ferry, yacht, oil tanker,
etc.) and size (from a few meters to a few hundred of meters). The
optical images can have different off-nadir angles which results
in different visual appearances. The detector has to consider all
these varieties. New methods are still investigated to deal with
these challenges.

Related work Corbane et al. in (Corbane et al., 2010) de-
scribe an automatic detection model based on statistical meth-
ods, mathematical morphology and other signal-processing tech-
niques such as the wavelet analysis and Radon transform. They
use panchromatic SPOT images with 5 meter resolution.

Zhu et al. in (Zhu et al., 2010) present a hierarchical complete and
operational automatic vessel detection approach based on shape
and texture features, which is considered a sequential coarse-to-
fine elimination process of false alarms. The method works on
CBERS images with 20 meter resolution and SPOT image with
resolutions 5 and 10 meters.

2 DESCRIPTION

I present a rapid vessel detector algorithm with applying object
detection methods originally developed in the computer vision
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field. The input for the detection is a single channel, 8 bit, geo-
referenced image. The detector is based on the object detection
framework originally used for face detection in (Viola and Jones,
2004).

The core part of the detector is a binary classifier which distin-
guishes image windows of vessels from non-vessels. This clas-
sifier is trained offline. During the online detection a window
is slided along the image with different orientation and size and
classified as vessel or background. The classified windows are
grouped together to avoid multiple detection. The image win-
dows classified as vessels contain also the surrounding areas around
the vessels. The accurate size of the vessel is measured by ex-
tracting the contours of the vessel with image segmentation. The
figure 1 shows the process diagram.

Figure 1: The detection process

2.1 The classifier

Features The classifier uses the Haar-like features extended with
the tilted Haar-like features (Lienhart and Maydt, 2002). The
Haar-like features are simple features based on the difference of
the sum of the intensity values at two image areas. The figure 2
shows the used Haar-like features, where the feature value is the
sum difference between the black and the white image area. The
number of the possible Haar-like features is much higher than the
number of pixels in the image, so the information in the image
is overrepresented but during the training the important features
are selected. The figure 3 shows the first two Haar-like features
selected by the training. Using the integral images the features
can be calculated extremely efficient, by a few memory accesses
and arithmetic operations, and the number of operations is inde-
pendent from the size of the feature. Thus the computational cost
of the feature extraction is low.

Figure 2: The used Haar-like features from

Figure 3: The first Haar-like features of the classifier

I have also considered using the HOG-features like in (Zhu et al.,
2006). These features are efficient for larger object sizes, they

were typically used with 64× 128 detection window. In our case
the detection window has a size of 12× 24 because the detected
objects are also small. This size is closer to the detection window
size 24× 24 used in (Viola and Jones, 2004) with Haar-features.

AdaBoost The Haar-like features are weak-classifiers, they pro-
vide a decision slightly better than by chance (0.5 probability).
The Gentle AdaBoost algorithm described in (Friedman et al.,
1998) combines multiple Haar-like features together to form a
strong classifier.

The Gentle AdaBoost algorithm combines regression trees, with
stump structure, the features are the input (x) and the probability

fm(x) = Pw(y = 1|x)− Pw(y = −1|x)
is the output. The output values of the classifier are y = −1
for the negative training samples and y = +1 for the positive
training samples.

The training algorithm is the following, where N is the number
of samples, M is the number of weak classifiers, x is the input
vector, y is the classification output.

1. Initialize the weights wi = 1/N , i = 1, 2, . . . , N and the
classifier F (x) = 0

2. for m = 1, 2, . . . ,M do:

(a) Fit the regression function decision tree fm(x) by weighted
least-squares of yi to xi with weights wi.

(b) Update F (x) = F (x) + fm(x)

(c) Update wi = wie
−yifm(x) and normalize so that

N∑
i=1

wi = 1

Weak classifiers are added until the classifier reaches the de-
sired detection and false positive rate.

3. The output classifier is sign[F (x)] where

F (x) =

M∑
m=1

fm(x).

Cascade For the rapid runtime speed the detector has a cascade
structure. The detection is divided into stages of classifiers. Each
stage rejects the object or passes it to the next stage. The im-
age window which passes the last stage is classified as object at
the end. The image regions easy to classify, e.g. homogeneous
water, are rejected by the early stages, while the difficult image
windows, e.g. waves, are classified as non-vessel by the later
stages.

The false positive rate of the final cascade is

F =

K∏
i=1

fi (1)

where K is the number of stages, fi is the false positive rate of
the classifier of the ith stage. The detection rate is

D =

K∏
i=1

di, (2)
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where di is the detection rate of the classifier of the ith stage.
Thus a 20 stage classifier with di = d = 0.995 and fi = f =
0.5 provides a theoretical detection rate of D ≈ 0.9 and a false
positive rate of F ≈ 5× 10−7.

2.2 Training

The detector was trained on WorldView-1 and WorldView-2 im-
ages with 50 cm resolution. The figure 4 shows positive samples,
the figure 5 shows regions from which negative samples are cho-
sen. The vessel samples, manually labeled on the satellite images,
are cropped, rotated to x-axis direction and resized to 12×24 pix-
els.

The detector was trained with 800 positive samples. For each
stage negative samples were chosen randomly, from manually la-
beled regions not containing vessels, and evaluated by the earlier
stages until 800 false positives were found, these samples were
used as negative samples. The final cascade has 20 stages, each
with a detection rate di = 0.995 and false positive rate fi = 0.5.

Figure 4: Positive training samples

Figure 5: Regions for negative training samples

2.3 Detection

Watermask To avoid the processing of land surfaces the SRTM
watermask is rasterized into the georeferenced satellite image as a
binary mask. The larger land areas are skipped during the sliding
window classification, while the remaining detections over land
areas are rejected in the grouping step.

Sliding window The classifier is direction variant, but the ves-
sels can lie in arbitrary directions in the image. Thus the detection
has to be performed for multiple directions. I have considered two
possibilities, rotating the image or rotating the classifier.

Rotating the Haar-like features of the detector can lead to errors
as it was investigated in (Barczak et al., 2006). The features of
the vessel classifier have a small size (i.e. 2− 24 pixels). On this

scale the rasterization of the pixels is not negligible thus the Haar-
like feature values can change by rotation. The fast calculation of
Haar-like features with integral images is only possible in specific
directions, i.e. the axis aligned directions for the basic Haar-like
features like in (Viola and Jones, 2004) or the 45◦ direction like
in (Lienhart and Maydt, 2002).

Because of these difficulties, I rotate the image instead of the de-
tector. I rotate the original input image and the same detector
is executed on the rotated image. The detections on the rotated
image are calculated back for the original image. I detect in 16
directions, from 0◦ to 337.5◦ with 22.5◦ steps. The detection
in different directions is performed parallel on a multi-core pro-
cessor. This task is well suited for parallel processing since the
rotated images are independent from each other. The detector has
to work also on large images (e.g. 16000 × 16000 pixels). For
these images the integral images need a large amount of memory.
For one grayscale image 4 integral images are calculated. Two
integral images are needed for the basic Haar-like features, one
with the original value and one with the square value of the pix-
els. The square valued integral images is used for calculating the
variance of the sliding window. Similarly, two integral images are
needed for the tilted Haar-like features. Since the integral images
contain larger pixel values, they require finer quantization (i.e 32
or 64 bit), so one integral image can have 4 to 8 times the size of
the 8 bit input image. The detection is a memory access intensive
process, where the memory bandwidth can lead to bottleneck. To
reduce the memory need, the rotated image is tiled with overlaps,
so only a smaller tile of the integral images have to be stored in
the memory. The overlaps are needed to ensure that one object
is always completely present at least one of the tiles. The tiling
can speed up the detection on images which contain land surface
beside the sea surface by rejecting the tiles not containing water
surface.

Detection grouping One vessel might be detected multiple times
in different directions since the detections in the various direc-
tions are independent. The most common case is, that one vessel
is detected both in the correct direction and in the opposite (i.e.
180◦ rotated). To detections are grouped together by dividing
them into equivalency classes. First the criteria for belonging to
the same equivalency class is the difference in position and size.
The equivalency classes with only one member are rejected. As
a next step the objects in the equivalency classes are grouped to-
gether with the same algorithm, but based on the difference be-
tween the heading angles. For the group with the most members,
the heading, position and size mean is calculated in the next step,
the size measurement.

Size measurement The output of the detector is a rectangle
containing also the environment around the vessel. For an ac-
curate size and heading measurement the contour of the vessel is
extracted. The detected image window is thresholded by using
Otsus method (Sezgin and Sankur, 2004). This finds an opti-
mal threshold separating the image into two classes with minimal
intra-class variance (the weighted sum of variances of the two
classes σ2

ω(t)).

σ2
ω(t) = ω1(t)σ

2
1(t) + ω2(t)σ

2
2(t),

where ω1 and ω2 are the probabilities of the two classes separated
by the threshold t and σ2

1 , σ
2
2 are the variances of the two classes.

The topological structure of the binary image is extracted with
the algorithm described in (Suzuki and Abe, 1985). A rectangle
is fitted on the largest extracted segment. The larger dimension of
this rectangle is the length of the vessel, the smaller is the width,
the center is the location and the angle is the heading.
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2.4 Results

The method was trained and tested on 10 satellite images taken by
the satellites WorldView 1, WorldView 2 each covering an area
of approximately 50 km2 with a ground sampling distance of 50
cm. 9 image were taken over the coastal areas of the Mediter-
ranean sea and one near Sidney, Australia. I show the qualita-
tive results, quantitative analysis is planed to be studied in the fu-
ture. The described detection method can detect the vessels with
a good quality if the watermask is accurate and the water doesn’t
contain large waves (comparable to the size of the vessels). The
figure 6 and 7 shows detection results. The watermask is shown
with a blue layer, the output of the sliding window classifier are
the red rectangles while the measured sizes are the yellow, the
dark green rectangles are the detections before grouping. The
detections not located on the water surface were rejected.

Typical scenes where the detection produces false positives are
presented on the figure 8. One case is where due to inaccuracy of
the watermask the shore is included in the water surface. Other
typical false positive sources are the large waves and wakes of
speed boats.

The detection time varies by the context of the image, for images
with large homogeneous regions it is faster. It is within in 2-4
minutes on an 8 core Intel Xeon E5-2680 processor with 64 GB
memory.

Input image

Detections
Figure 6: Results for WV2 image near Sidney, Australia

Direct comparison with other methods is difficult since the input
data is different with different ground sampling distances and the
targeted vessels have different sizes.

Input image

Detections
Figure 7: Results for WV2 image at Nizza, France

3 CONCLUSIONS

I have presented a novel fast method for detecting small vessels
on very high resolution satellite images by applying modern com-
puter vision object detection techniques. The detector concen-
trates on vessels shorter as 20 m. These vessels have a special
interest for the authorities, since they are mostly not equipped
with the AIS and they can hardly be detected by SAR vessel de-
tection methods. The detection method can deliver good results
for vessels above 8 meter of length. Below this size classifying
an image window is very difficult, also for a human interpreter,
e.g. a wave can have very similar shape as a small vessel. The
detector runs fast (in minutes for 16873 × 14684 pixels image)
on a modern multi-core computer, thus enabling near real time
application, i.e. one hour from image acquisition to end user.

Planed future work included creating a more detailed performance
analysis of the detector and extending the detection for large ves-
sels with vessel type classification. The detector could be accel-
erated by using a rotation invariant classifier. Investigating new
methods which consider also the context around the vessel could
enable the reliable detection also in cases where the sliding win-
dow classification fails.
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Figure 8: The typical problematic images
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