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ABSTRACT: 
 
Since its publication in 1998 (Laben and Brower, 2000), the Gram-Schmidt pan-sharpen method has become one of the most popular 
algorithms to pan-sharpen multispectral (MS) imagery. It outperforms most other pan-sharpen methods in both maximizing image 
sharpness and minimizing color distortion. It is, on the other hand, also more complex and computationally expensive than most 
other methods, as it requires forward and backward transforming the entire image. Another complication is the lack of a clear recipe 
of how to compute the sensor dependent MS to Pan weights that are needed to compute the simulated low resolution pan band. 
Estimating them from the sensor’s spectral sensitivity curves (in different ways), or using linear regression or least square methods 
are typical candidates which can include other degrees of freedom such as adding a constant offset or not. As a result, most 
companies and data providers do it somewhat differently. 
Here we present a solution to both problems. The transform coefficients can be computed directly and in advance from the MS 
covariance matrix and the MS to Pan weights. Once the MS covariance matrix is computed and stored with the image statistics, any 
small section of the image can be pan-sharpened on the fly, without having to compute anything else over the entire image. 
Similarly, optimal MS to Pan weights can be computed directly from the full MS-Pan covariance matrix, guaranteeing optimal image 
quality and consistency. 
 
 

1. INTRODUCTION 

1.1 Multispectral pan-sharpening 

One of the common problems in remote sensing and high 
resolution image processing is the need for somehow fusing 
lower resolution, multispectral (MS) bands such as Red, Green, 
Infrared, etc., with the single, higher resolution Pan band. 
Ideally, the MS bands can be up-sampled to the full Pan 
resolution without altering their spectral properties. In practice 
however, this is hard to achieve. Many pan-sharpening 
algorithms exist, differing in the degree, to which they 
maximize the sharpness, and at the same time minimize the 
color or spectral distortion of the pan-sharpened output image. 
Older and simpler algorithms, such as the Intensity-Hue-
Saturation (IHS) transformation or the Brovey method only 
work for up to three MS bands, while more modern algorithms 
work for four or more bands. For a recent survey of pan-
sharpening methods see for instance (Amro, 2011). Since its 
publication in 1998 (and patented by Kodak in 2000), the Gram-
Schmidt pan-sharpen method has become one of the most 
widely used high quality methods. Many variations and 
enhancements have been studied and published, e.g. (Aiazzi, 
2007). The Gram-Schmidt method is also offered by companies 
such as Esri, ENVI, and others, in their software packages.  
 
1.2 The Gram-Schmidt pan-sharpen method 

The Gram-Schmidt pan-sharpen method in a nutshell: 
 

1) Compute a simulated low resolution Pan band as a 
linear combination of the n MS bands:  

 
 

𝑃𝑎𝑛!"# = 𝑤!  𝑀𝑆!

!

!!!

 

        (1) 
 

2) Treating every band as a high dimensional vector and 
starting with the simulated pan band as the first 
vector, make all bands orthogonal using the Gram-
Schmidt vector orthogonalization, or, more precise, a 
modified version of it. For the Gram-Schmidt pan-
sharpening, both the incoming bands and the 
arguments of the scalar products are made dc free first 
(get their means subtracted). This turns the original 
Gram-Schmidt scalar products into covariances. The 
iterative procedure stays the same: Compute the angle 
between the Red band and the Pan band, rotate the 
Red band to make it orthogonal to the Pan band. In 
the next step, compute the angles between the Green 
band and the Pan band and rotated Red band, then 
rotate the Green band and make it orthogonal to both 
the Pan band and rotated Red band. And so forth. This 
Gram-Schmidt forward transform de-correlates the 
bands.  
 

3) Replace the low resolution simulated Pan band by the 
gain and bias adjusted high resolution Pan band. Up-
sample all MS bands accordingly.  
 

4) Reverse the forward Gram-Schmidt transform using 
the same transform coefficients, but on the high 
resolution bands. The result of this backward Gram-
Schmidt transform is the pan-sharpened image in high 
resolution.  
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There are two practical problems here: First, how do we 
compute the MS to Pan weights needed for step 1? Especially if 
we don’t know the sensor’s spectral sensitivity curves or we 
even don’t know the sensor. Second, how can we pan-sharpen a 
small section of the (potentially huge) image without having to 
forward and backward transform the entire image? We will 
address the second question first.  
 
 

2. THE RECIPE 

2.1 Compute the Gram-Schmidt transform coefficients 
from the MS covariance matrix and the MS to Pan weights 

Here we show that the Gram-Schmidt transform coefficients or 
matrix (let’s call it the GS matrix), which is usually computed 
iteratively together with the forward transformed (or “rotated”) 
MS bands, can be computed directly from the MS covariance 
matrix and the MS to Pan weights. We start by rewriting the 
original equations (10)-(12) in (Laben and Brower, 2000). First, 
for simplicity, we drop the subtracted mean terms, or, in other 
words, assume the incoming bands are already dc free. We will 
show further below that this has no effect on the mathematical 
result. Then, omitting the pixel indexes for brevity, and 
explicitly taking the first band (0) as the simulated Pan band and 
the remaining bands as MS bands 1 to n, we get  
 
 
𝑃𝑎𝑛′!"# = 𝑃𝑎𝑛!"# 
 

𝑀𝑆!! = 𝑀𝑆! −   
< 𝑃𝑎𝑛!"#

! |  𝑀𝑆! >
< 𝑃𝑎𝑛!"#! |  𝑃𝑎𝑛!"#! >

  𝑃𝑎𝑛!"#!  

 

𝑀𝑆!! = 𝑀𝑆! −   
< 𝑃𝑎𝑛!"#

! |  𝑀𝑆! >
< 𝑃𝑎𝑛!"#! |  𝑃𝑎𝑛!"#! >

  𝑃𝑎𝑛!"#!  

 

                                              −   
< 𝑀𝑆!!|  𝑀𝑆! >
< 𝑀𝑆!!|  𝑀𝑆!! >

  𝑀𝑆!!  

 
⋮ 

 

𝑀𝑆!! = 𝑀𝑆! −   
< 𝑃𝑎𝑛!"#

! |  𝑀𝑆! >
< 𝑃𝑎𝑛!"#! |  𝑃𝑎𝑛!"#! >

  𝑃𝑎𝑛!"#!  

 

                                                −   
< 𝑀𝑆!! |  𝑀𝑆! >
< 𝑀𝑆!! |  𝑀𝑆!! >

  𝑀𝑆!!   
!!!

!!!

 

        (2) 
 
The apostrophe denotes the transformed or rotated band, and    
< a | b > means the covariance of bands a and b. Note that the 
coefficients above depend on the transformed bands and can 
only be computed after the bands with lower indexes have been 
transformed. Therefore our next step is to substitute equation (1) 
into the above Gram-Schmidt transform equations. We compute 
the coefficients one column at a time, from left to right, in 
increasing difficulty. All transform coefficients 𝐺𝑆!"  can be 
written in the form: 
 
 

𝐺𝑆!" =   
< 𝑀𝑆!! |  𝑀𝑆! >
< 𝑀𝑆!! |  𝑀𝑆!! >

  =   
𝑎!  
! < 𝑀𝑆!|  𝑀𝑆! >

∑  ∑𝑎!
!𝑎!
!   < 𝑀𝑆!|  𝑀𝑆! >

 

        (3) 
 

With their weight vectors 𝑎! computed also iteratively only 
taking turns with the transform coefficients, in vector notation, 
as:  
 
 
𝑎! =   𝑤  
𝑎! =   𝑒! −   𝐺𝑆!"  𝑎!  
𝑎! =   𝑒! −   𝐺𝑆!"  𝑎! −   𝐺𝑆!"  𝑎!  
 
⋮ 

𝑎! =   𝑒! −    𝐺𝑆!"   𝑎!
!!!

!!!

 

        (4) 
 
Here 𝑎! is the MS to Pan weight vector, 𝑎! the MS to rotated 
red band weight vector, 𝑎! the MS to rotated green band weight 
vector, etc. In other words, from the initial MS to Pan weight 
vector 𝑎! we calculate the first Gram-Schmidt transform 
coefficient 𝐺𝑆!", then Gram-Schmidt transform this initial 
weight vector to compute the next weight vector 𝑎! which 
allows us to compute the Gram-Schmidt transform coefficients 
for the next row and so on.  
 
The result is a function that takes as input the MS covariance 
matrix and the MS to Pan weights, and outputs the Gram-
Schmidt transform coefficients. The MS covariance matrix can 
be computed once for the MS raster and stored as part of the 
raster statistics. The MS to Pan weights can be assumed to be 
mainly sensor dependent and having been computed in advance. 
The direct computation of the GS matrix allows to pan-sharpen 
any small portion of an image without having to compute any 
other property over the entire image first. The resulting pan-
sharpened image is exactly the same as if globally computed. 
Another practical use case is that the MS to Pan weights can be 
varied and only an area of interest pan-sharpened on-the-fly, 
again without having to compute anything globally. Last but not 
least the direct computation of the GS matrix allows for 
analyzing the propagation of errors from either the MS to Pan 
weights or the MS covariance to the GS matrix. 
 
In the beginning of this derivation we had simply dropped the 
band mean offsets, in contrast to Laben and Brower. This does 
not make a difference for the end result. The MS covariance 
does not depend on the band mean. The covariance of any two 
bands a, b, with one of the two bands constant is 0, which 
means that adding or subtracting constant mean terms cancels 
out in the Gram-Schmidt transform coefficients. With the GS 
matrix being independent of the band means, adding or 
subtracting these means in the above equations only results in 
constant, position independent offsets in the rotated bands. 
When doing the backward transform, the final (forward and 
backward transformed) MS bands will have the same band 
means as the original MS bands, as long as the substituted high 
resolution Pan band has the same mean as the low resolution 
simulated one. This is the case, thanks to the gain bias transform 
of the high resolution Pan band before it can replace the 
simulated one (equations (1)-(3), (Laben and Brower, 2000)).  
For the same reason any constant offset in the simulated Pan 
band would have no effect on the result.  
 
2.2 Compute optimal MS to Pan weights 

Now we come to the second topic of interest, the computation 
of optimal MS to Pan weights. Optimal here means optimal for 
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Gram-Schmidt pan sharpening. As it turns out, we get this as a 
by-product of the above calculations. Part of the first column 
Gram-Schmidt transform coefficients was 
 

< 𝑃𝑎𝑛!"#! |  𝑀𝑆! >  =   𝑤!   < 𝑀𝑆!|  𝑀𝑆! >
!

!!!

 

        (5) 
 
We had used this formula to compute the left side from the 
(known) MS to Pan weights and the MS covariance matrix. All 
we do now is replace the simulated Pan band on the left by the 
low pass filtered and down sampled real high resolution Pan 
band, compute the left side, and solve for the weights w. The 
MS covariance matrix is a real symmetric square matrix with its 
size equal to the number of MS bands and usually directly 
invertible. So we get, with index ds for down sampled, and C 
for covariance matrix,  
 
 

𝑤!   =   𝐶!"!!   < 𝑃𝑎𝑛!"|  𝑀𝑆! >
!

!!!

 

        (6) 
 
In case C should turn out to be singular (not directly invertible), 
this equation can also be solved in a least square fashion by 
Singular Value Decomposition (SVD). Decompose C into its 
SVD components, compute its pseudo inverse, and then solve 
(6).  
 
This formula has three advantages over any other approach. 
First, because it only contains covariances, it is inherently 
independent of any kind of offset or bias from either Pan or MS 
bands. Second, it is fully consistent with the Gram-Schmidt 
framework. Third, it is computed solely from image statistics, 
with the MS covariance matrix usually already pre-computed 
and stored with the MS image.  
 
 

3. OTHER CONSIDERATIONS 

3.1 Compute the MS to Pan weights per sensor or per 
scene? 

There are still two major options left to choose from. The above 
formula (6) allows computing MS to Pan weights for each scene 
or image individually. Or, we can pick a representative scene 
for each sensor, compute weights for it, and use those weights 
for all other images coming from the same sensor. Both 
workflows have their advantages and disadvantages. For 
example, in scenes with only brown desert or blue ocean, in icy 
areas, or areas with full cloud cover, computing the weights 
again and again not only seems like a waste of CPU time, but 
also may lead to problems if the image has a constant band 
(e.g., all white). Working with representative scenes allows to 
hand-select them, choose relevant content (such as urban areas), 
and make sure they don’t have any alignment problem. Note 
that the Gram-Schmidt method is more robust to spatial 
misalignment of the bands than most other pan-sharpening 
methods because all transform coefficients are computed in the 
low MS resolution. Good practice is to have good sets of 
weights pre-computed and use them as a starting point, and only 
re-compute MS to Pan weights as a refinement for certain 
scenes as needed.  
 

3.2 MS to Pan weights can be normalized to 1 

The MS to Pan weights are relative weights. As we can see 
from the Gram-Schmidt transform equations (2) above, any 
scale factor applied to all weights cancels out. The resulting 
forward transformed MS bands are independent of such a scale 
factor. Finally, when we back transform them, as long as the 
substituted high resolution Pan band got gain adjusted to the 
simulated Pan band, such a scale factor cancels out there as 
well. Again, same as with the argument about the band means 
above, this is why the gain bias adjustment of the high 
resolution Pan band is important, before it can replace the 
simulated one.  
All this gives us the liberty of normalizing the weights to 1, 
without changing the results.  
 
3.3 How about negative weights? 

Another comment to be made is about dealing with negative 
weights. Although only rarely observed so far, it can happen 
that a weight can come out slightly negative. For instance, we 
got -0.01 for the IR weight for the UltraCam sensor which 
basically has no IR in the Pan band. Another case was -0.11 for 
the Blue weight for Ikonos, where the insufficient coverage of 
the Pan bands IR region by just one NIR band on the MS side 
caused some tilting of the weight vector.  
At this point the less sensitive reader may not bother about 
negative weights and just use them. However, negative weights 
are not possible when they are read off the sensor’s spectral 
sensitivity curves as suggested by Laben and Brower (Laben 
and Brower, 2000). So they are hard to justify. For this reason 
we set negative weights back to 0 and renormalize the weights. 
This has worked fine for us so far. However, for the sake of 
completeness, we will now outline a more rigorous treatment.  
Let’s rewrite our MS to Pan weight formula as a minimization 
problem with additional inequality constraints using matrix 
vector notation (calling the MS-Pan covariance vector p) as 
 
 
 𝐶  𝑤 − 𝑝 = 𝑚𝑖𝑛,          𝑤! ≥ 0    (7) 
 
 
Making use of the symmetry of C, we get 
 
 
 𝑤!𝐶!𝑤 − 2  𝑝!𝐶  𝑤 = 𝑚𝑖𝑛,          𝑤! ≥ 0   (8) 
 
 
With obvious substitutions this can be turned into 
 
 
 !

!
𝑤!𝑄𝑤 + 𝑏!𝑤 = 𝑚𝑖𝑛,          𝑤! ≥ 0    (9) 

 
 
which is a classical quadratic programming problem. On how to 
solve it, see for instance (Wikipedia, 2013).  
 
3.4 Pan-sharpen on the fly without computing statistics 

Consider an emergency response scenario, for example, a wild 
fire or an earthquake. Satellite images need to be processed and 
analyzed as quickly as possible to find out where the most 
damage is and where the rescue personnel should be sent first. 
Besides RGB, other three band combinations involving an 
infrared or near infrared channel, and two of the visible bands 
can be used, too. Such pseudo color images can highlight other 
features, which are not so easy to see in the regular RGB image. 
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In an emergency or disaster situation, no one wants to wait until 
all the statistics including the covariance matrix have been 
computed, for all images involved.  
Instead, we use the MS to Pan weights pre-computed for the 
current sensor. In the absence of image statistics, we pan-
sharpen only the area needed to satisfy the current request (e.g., 
the screen), but guaranteeing a minimal pixel area. I.e., we 
enlarge the processed area as needed to avoid strange results 
that we might get with too few pixels. This way pan-sharpened 
imagery is available instantaneously, suitable for panning and 
zooming. On the downside this way of processing is not 
globally consistent: Exporting the entire image this way would 
lead to small tiling artefacts, as the Gram-Schmidt 
transformation matrix will somewhat vary from tile to tile.  
 
 

4. EXAMPLE 

Let us look at one example. We have picked a WorldView-2 
satellite scene of London and look at the London tower bridge, 
see Fig. 1-4 below. Here we show: 
 

1. The original MS image around the tower bridge. 
2. The original Pan image. 
3. The MS image up-sampled to full Pan resolution. 
4. The result of the Gram-Schmidt pan-sharpening.  

 
Original imagery courtesy of Digital Globe. The images have 
been processed using Esri’s ArcGIS for Desktop 10.2 and then 
cropped to fit in here. Compare the sharpness of the pan-
sharpened result image to the sharpness of the original Pan 
image and the colors of the pan-sharpened result image to the 
colors of the up-sampled MS image.  
 
 

5. SUMMARY AND CONCLUSION 

In this paper, we have shown the following for the Gram-
Schmidt pan-sharpen method: 
 

1. If the MS covariance matrix and the MS to Pan 
weights are known, the Gram-Schmidt transform 
coefficients can be directly computed. This turns the 
Gram-Schmidt pan-sharpen method from a global into 
a local method, meaning that any small region of the 
image can be pan-sharpened on the fly without having 
to compute anything globally over the entire image 
first.  
 

2. If the MS covariance matrix and the MS to Pan 
covariance vector are known, optimal MS to Pan 
weights can be directly computed. Then the Gram-
Schmidt transform coefficients can be computed. So 
the entire Gram-Schmidt transform is fully 
determined by the MS and MS to Pan covariances.  

 
3. Once the MS to Pan weights have been computed on 

a representative scene of a given sensor, other images 
from the same sensor can be pan-sharpened even 
without image statistics, but then only approximately, 
by treating every requested tile or area as a full image. 
Such a local or dynamic mode can be useful for 
instantaneously pan-sharpening freshly incoming 
images without having to compute full image 
statistics first.  

 

We hope that this description or recipe makes it easier for others 
to go with the Gram-Schmidt pan-sharpen method and make 
optimal use of its potential.  
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Figure 1: WorldView-2 image of the London tower bridge. MS 
image at source resolution. Courtesy of Digital Globe.  
 
 

 
 
 
Figure 2: Pan image at source resolution. Courtesy of Digital 
Globe.  
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Figure 3: MS image up-sampled to Pan resolution using 
bilinear resampling.  
 
 

 
 
 
Figure 4: MS image pan-sharpened using Gram-Schmidt pan-
sharpening in Esri’s ArcGIS for Desktop 10.2.  
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