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ABSTRACT: 
 
In this paper a new classification technique for hyperspectral data based on synergetics theory is presented. Synergetics – originally 
introduced by the physicist H. Haken – is an interdisciplinary theory to find general rules for pattern formation through self-
organization and has been successfully applied in fields ranging from biology to ecology, chemistry, cosmology, and 
thermodynamics up to sociology. Although this theory describes general rules for pattern formation it was linked also to pattern 
recognition.  Pattern recognition algorithms based on synergetics theory have been applied to images in the spatial domain with 
limited success in the past, given their dependence on the rotation, shifting, and scaling of the images. These drawbacks can be 
discarded if such methods are applied to data acquired by a hyperspectral sensor in the spectral domain,  as each single 
spectrum, related to an image element in the hyperspectral scene, can be analysed independently. The classification scheme based on 
synergetics introduces also methods for spatial regularization to get rid of “salt and pepper” classification results and for iterative 
parameter tuning to optimize class weights. The paper reports an experiment on a benchmark data set frequently used for method 
comparisons. This data set consists of a hyperspectral scene acquired by the Airborne Visible Infrared Imaging Spectrometer 
AVIRIS sensor of the Jet Propulsion Laboratory acquired over the Salinas Valley in CA, USA, with 15 vegetation classes. The 
results are compared to state-of-the-art methodologies like Support Vector Machines (SVM), Spectral Information Divergence 
(SID), Neural Networks, Logistic Regression, Factor Graphs or Spectral Angle Mapper (SAM). The outcomes are promising and 
often outperform state-of-the-art classification methodologies. 
 
 

1. INTRODUCTION 

Hyperspectral image data cubes consist of hundreds of 
contiguous bands with high spectral resolution (e.g. < 10 nm) 
but normally coupled with low spatial resolution. The very rich 
spectral information of each image pixel allows distinguishing 
between spectrally close ground materials and hence to classify 
images with high accuracy, which is not possible using 
multispectral data.  However the high dimensionality of the data 
signatures introduces several problems known as the curse of 
dimensionality (Scott 2008). In this paper a novel classification 
scheme for hyperspectral data in low dimensioned sub-spaces 
based on the principles of synergetics theory is presented.  
Synergetics (from Greek “Working together”) was originally 
introduced by the physicist H. Haken and is an interdisciplinary 
theory to find general rules for pattern formation through self-
organization and has been successfully applied in fields ranging 
from biology to ecology, chemistry, cosmology, 
thermodynamics up to sociology (Haken 2007). In Laser theory 
fundamental research was carried out to describe the transition 
of completely disordered states to a state ordered in a 
macroscopic scale (Haken 1976).  Essential in synergetics 
theory is the order parameter concept meaning that complex 
systems can be dominated by only few parameters. Although 
this theory describes general rules for pattern formation it was 
linked also to pattern recognition (Haken 1991). Pattern 
recognition algorithms based on synergetics theory have been 
applied to images in the spatial domain with limited success in 
the past, given their dependence on the rotation, shifting, and 
scaling of the images (Fuchs et al. 1988, Haken 1988a, Haken 

1988b, Hogg et al. 1998, Kawano at al. 2006, Boebel et al. 
1994, Maeda et al. 1999, Zhao et al. 2003). These drawbacks 
can be discarded if such methods are applied to data acquired 
by a hyperspectral sensor in the spectral domain, as each single 
spectrum, related to an image element in the hyperspectral 
scene, can be analysed independently. 
   The classification scheme based on synergetics systems can be 
described as follows (Cerra et al. 2012). In a first step the 
spectrum of each pixel is projected onto a space spanned by a 
set of user-defined prototype vectors, which belong to some 
classes of interest, and then attracted by a final state associated 
to a prototype. The spectrum can thus be classified, establishing 
a first attempt at performing a pixel-wise image classification 
using notions derived from synergetics. As typical synergetics-
based systems have the drawback of a rigid training step, we 
introduce a new procedure which allows the selection of a 
training area for each class of interest, used to weight the 
prototype vectors through attention parameters and to produce a 
more accurate classification map through plurality vote of 
independent classifications. As each classification is in principle 
obtained on the basis of a single training sample per class, the 
proposed technique could be particularly effective in tasks 
where only a small training data set is available.  
The paper reports an experiment on a frequently used 
benchmark data set.  A hyperspectral scene acquired by the 
Airborne Visible Infrared Imaging Spectrometer AVIRIS sensor 
of the Jet Propulsion Laboratory acquired over the Salinas 
Valley in California, USA, with 15 vegetation classes.  The 
results are compared to state-of-the-art methods.  
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2. CLASSIFICATION BASED ON PRINCIPLES OF 

SYNERGETICS THEORY 

In the following the classification scheme for hyperspectral data 
based on the principles of synergetics theory is described. 
Originally synergetics theory is formulated using covariant and 
contravariant components of vectors to handle non-orthogonal 
spaces. The correspondence between such dual vector space 
operations and least squares (LS) methods in synergetics theory 
has been shown in (Cerra et al. 2012). Therefore the more 
common LS methods are used to describe the theoretical 
background.  
In a first step of a typical synergetics based system the user 
selects some prototype patterns, each of which corresponds to a 
class of interest. Let N

k R∈'v , Mk ,...,1=  be prototype 
vectors formed by N-dimensional real valued components of 
spectral signatures extracted from the hyperspectral image, 
which are assumed to be linearly independent and normalized to 
unit length by 
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and let furthermore ),...,( 1 MvvA =  be the matrix build by 
the column vectors of the prototypes. This set of prototype 
vectors spans the subspace of classes N

c R⊂Ω with the 
condition to be complied with NM < . An arbitrary spectral 
feature vector NR∈+= rqq ˆ  can be decomposed by a vector 

q̂  , living in the subspace cΩ , and a vector r  orthogonal to 

the subspace cΩ . This decomposition is equivalent to the 

minimization of the scalar product rrT . The vector q̂  is then 

given by qPq =ˆ  with the symmetric and idempotent 

orthogonal projection operator ( ) TT AAAAP
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=  and the 
residual vector qPIr )( −=  with I  the unit matrix which is 
orthogonal to the subspace (it is remarked that each Hilbert 
space can be uniquely decomposed by orthogonal sub-spaces). 
The vector q̂  can be expressed as linear combination of the 
prototype vectors by 
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where – in the parlance of synergetics – the expansion 
coefficients kq are called order parameters. The order 
parameter space is a basic concept in synergetics as these 
parameters dominate complex systems in collapsing the degree 
of freedom (dimensionality reduction).  It is again remarked that 
the least squares solution for kq  corresponds to the orthogonal 
projection onto the subspace spanned by the prototype vectors. 
In synergetics theory an energy function (or loss function) is 
established with local energy minima for each of the prototype 
vectors (a prototype generates two symmetric minima but we 
consider here only the positive values). 
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where kjB andC are positive constants, and { }Mλλ ,...,1 are 
positive values, also called attention parameters, which serve 
as weighting factors for classes. Equation (3) establishes a 
landscape of energy with local energy minima for each of the 
prototypes (see figure 1). The first term 1E generates minima 

along the prototype vectors, the second term 2E discriminates 

the prototypes, and the third term 3E  envelops the energy 
system (saturation term). 
The basic equation of synergetics for pattern recognition as 
formulated in (Haken 1991) describes the time evolution of a 
feature vector )(tq . A coupled differential equation (similar to 
the gradient descent method) defines a dynamic system by 
describing the time evolution of the order parameters. Loosely 
speaking, the feature vector )(tq  is moving in the landscape of 
energy towards a unique final state for )( ∞→tq . 
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Therefore, a classification process takes place as the initial 
pattern is pulled into one of the possible final states, each of 
which is linked to a prototype vector. The input is then assigned 
to the class of interest represented by the chosen prototype. 
 
 

 
 
Figure 1 Energy function (equation 3) for two prototypes q1 and q2 
in the order parameter space. An arbitrary vector (white circle) 
projected onto the subspace of the prototypes is attracted towards 
a stable final state according to equation (4).  
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Based on the observations that the order parameter with the 
highest value at t=0 is related to the prototype that will be 
chosen by the system as winning final state, the highest initial 
order parameter given by  
 
 { }Mkqk k

k
,,1;maxarg ==   (5) 

 
defines the classification result (Haken 1991, Boebel et al. 
1994, Zhao et al. 2003). This approximation also speeds up the 
classification procedure as the solution of the complex coupled 
differential equation (4) for each pixel is discarded. The 
nonlinear terms in equation (3) in combination with the settings 
of the B and C values should be investigated in the future.  
 

 
 
Figure 2 Classification scheme. After selection of N training 
samples per class from the hyperspectral image N order 
parameter spaces are created and are used to project the 
hyperspectral image on this subspace. Each of this subspace 
projected image is independently classified after spatial 
regularisation. An iterative attention parameter tuning is 
performed and the final classification result is derived by majority 
voting. 
 
 
According to (Cerra et al. 2012) a flexible classification scheme 
is established with the following steps (figure 2)  
• For each class N training samples are selected from the 

hyperspectral image and a set of N order parameter spaces are 
produced (e.g first sample class 1, first sample class 2,..., 
second sample class 1, second sample class2,…). This is a 
more or less random selection of parameter spaces for 
individual samples in each class without repetition. It is noted 
that other random sets can be chosen.  

• In order to get rid of “salt and pepper” classification results 
the spectral vector under investigation is displaced towards 
the neighbouring spectral pixels (e.g. 3x3 window) if the 
Euclidian distance is below some threshold. This adaptive 
spatial regularization is performed in the order parameter 
space. 

•  For the N subspaces N independent classifications applying 
Equation (5) are performed and assigned to a winning class 
according to plurality vote. 

• The attention parameters for each of the prototypes are 
iteratively modified in order to attach individual weights to 
the prototypes. A relatively high attention parameter value 

increases the attraction potential of a prototype whereas 
negative values switch off the prototype. 

 
3. EXPERIMENT 

For the experiment we analysed the benchmark dataset from the 
AVIRIS sensor acquired by the Jet Propulsion Laboratory over 
the Salinas Valley in California, USA. The spatial dimension of 
the full scene is 512 × 217 samples with 192 spectral bands 
ranging from 0.4 µm to 2.5 μm. The water absorption bands as 
well as noisy bands are removed for the data evaluation 
according to (Plaza et al. 2005). The sensor has a spectral 
resolution of 10 nm and a spatial ground resolution of 3.7 m.  
 

The data are given in at-sensor radiance values and include 
vegetables, bare soils, and vineyard fields. An example band of 
the scene and the available ground truth are shown in Fig. 2.  
Fig. 3 shows the twenty training samples per class, which have 
been chosen for the classification. The same number of 
independent classifications has been carried out, with the final 
result derived from a majority voting as explained in the 
previous section. Results of the independent classifications have 

been improved by an 
additional step of attention 
parameters tuning, carried 
out with three different 
settings, all of them for 16 
iterations. In the first setting, 
with a similar approach to 
the one contained in (Wang 
et al. 1993), we used the full 
ground truth as a reference 
and used it to tune the 
parameters as described in 
the above section. As this 
approach is not realistic in 
practical applications, where 
the classes of the test set are 
usually unknown, in a 
second setting, we selected a 
separate training set, 
consisting of 100 samples 
per class. Finally, in the 
third setting, we selected no 
additional training area, but 

 
Figure 3 Test site Salinas (AVIRIS example band; left) and ground 
truth (15 classes; middle and right) 

 
Figure 4 Selection of twenty 
training samples for each class 
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used for every classification one sample per class to build the 
prototype vector space and the other 19 to tune the λ 
parameters.  
This introduces a negligible computational overhead, as the λ 
parameters tuning is achieved in linear time for the iterations. 
Fig. 6 shows the classification results for the overall scene. Fig. 
6a presents the results for a classification carried out on the 
basis of a single training sample per class, with confusion and 
salt-and-pepper noise being evident in many classes. Results 
improve considerably in Fig. 6b, after a majority vote of 20 
independent classifications. The improvement in overall 
accuracy (OA) achieved through majority vote agrees with the 
expected one of around 15% for a comparable number of 
independent classifications and accuracy of a single classifier 
(Kuncheva 2004). Salt-and-pepper noise in the classification is 
removed in Fig. 6c after a preliminary step of adaptive spatial 
filtering. Results benefit further from an automatic tuning of the 
attention parameters, with this improvement being more 
obvious when the full ground truth is taken as a reference ( see 
Fig. 6d and 6e).  
Especially we have confusion between vineyards and grapes, 
different fallow or broccoli fields, and lettuces of different age. 
The improvements obtained through the automatic tuning of the 
attention parameters for the case of the full ground truth 
adopted are reported in Fig. 5. As the algorithm tries to find the 
best parameters for all classes, the classes of interest containing 
a large number of pixels are not given priority and may be 
penalized yielding a worse OA. On the other hand, the plot of 
the values for the average accuracy (AA) exhibits an increase up 
to a horizontal asymptotic value of approximately 90%.  

 

 
Figure 5 Improvements of overall (OA) and average (AA) 
accuracy by automatic attention parameter (λ) tuning  
 
This suggests that the proposed training procedure, although 
empiric, converges to some local optimum. The selection of an 
extra training area is inconvenient, as it increases the size of the 
training set (Fig. 6d), or is not at all realistic for practical 
applications where no ground truth is available (Fig. 6e). 
Therefore, the final results in Fig. 8(f)  represent the best 
compromise between accuracy and size of the training set, as an 
accuracy comparable to the classification in  Fig. 6e is 
achieved without the need of an additional training area for the 
λ parameters. This is justified by the fact that the majority vote 
benefits from having as input more accurate classifications, 
achieved through separate λ parameters tuning steps. 
 

 
 
 
 
 

 
a b c d e f 

Figure 6 Classification results with different settings. (a) one training sample per class; (b) majority voting for 20 independent classifications 
using 20 samples per class; (c) same as (b), but with spatial regularization; (d) same as (c) but after attention parameter tuning using 100 
validation samples for each class; (e ) same as (c) but after attention parameter tuning using the whole ground truth data; (f) best compromise 
between size of training samples per class (20 samples) and accuracy using 20 independent classifications combined by majority voting using 
one sample per class with the other 19 samples to tune the attention parameter 
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Table I 
Classification results obtained by synergetics with different settings 
(see figure 6), other methods using the same training samples as for 

synergetics, other methods from previous works (see references). 
Overall Accuracy (OA), Average Accuracy (AA), Number of 

training samples (TS), Additional Training samples to tune the 
attention parameter (TS λ) 

 
 OA AA TS TS λ 
Synergetics ( a ) 96.57 74.26 1 0 
Synergetics ( b ) 82.43 84.96 20 0 
Synergetics ( c ) 84.10 87.80 20 0 
Synergetics ( d ) 87.82 90.21 29 100 
Synergetics ( e ) 90.15 94.40 20 All 
Synergetics ( f ) 88.82 92.35 20 0 
SVM 81.44 90.60 20 - 
SID 83.71 90.20 20 - 
SAM 78.64 85.40 20 - 
Factor Graphs 
(Makarau et al. 2012) 

85.32 90.91 20 - 

Neural Networks 
(Plaza et al. 2005) 
 

87.55 88.03 40 - 

Multinomial Logistic 
Regression 
(Li et al. 2010) 

86.49 - 15 - 

SVM & Morphological 
Operations 
(Plaza et al. 2009) 

87.25 - 65 - 

 
Table I reports the classification accuracy on the data set. To 
mitigate the influence of the training samples, we produced four 
maps as in Fig. 6f. This resulted in an average OA of 88.12%, 
with a standard deviation in the results of σ = 0.7. In order to 
have a fair comparison to other techniques, we performed a 
classification with the same training data set using well-known 
distance measures and classification techniques widely used in 
hyperspectral data analysis. As distance measures, the spectral 
angle mapper SAM (Kruse et al. 1993) and the spectral 
information divergence SID (Du et al. 2004) have been applied 
in two different ways to produce a classification map: majority 
vote of 20 separate classifications and a single classification 
using the full training set, merging afterward the classes of 
interest, following the criterion of minimizing the overall errors. 
The two techniques gave similar results, and only the best 
results are shown, in which SID shows better discrimination 
power than SAM. We also performed a classification with 
support vector machine SVM (Joachims 1999), which operates 
in implicit parameter hyperspaces by finding a manifold which 
divides the data of interest in two groups in the hyperspace, 
according to some criteria. In spite of being a general 
classification methodology, SVM have been often applied to 
hyperspectral data, due to their natural connection to 
multidimensional data (Demir 2010). We used a Gaussian radial 
basis function kernel defined as K(u, v) = exp(−γ|u − v|2), 
which is found to yield the best results for the classification of a 
different AVIRIS scene (Indian Pines) in (Melangi et al. 2004). 
We found empirically the best parameters after several tests and 
set γ to 0.01 and assigned a large penalty to errors C = 100. We 
assess the statistical significance of the difference in 
classification accuracy against SVM by McNemar’s test (Foody 
2004), which shows the two classifiers to be very different, with 
a probability for the differences in the results to be caused by 
random variations of some kind below 1%. Finally, we include 
results obtained through factor graphs (Makarau et al. 2012) 
also on the base of the same training samples, after applying a 
median filter to the parameter space. The main difference in the 
results between the proposed approach and its competitors is the 

better discrimination between the classes grapes and vineyard 
untrained, which drastically improves after 
the λ-parameter tuning. 
We also compared results obtained on the same data set in 
recent works in literature (Plaza et al. 2009, Plaza et al. 2005, Li 
et al. 2010). As the first two make extensive use of 
morphological profiles, for sake of comparison, we took into 
account results obtained on the original spectral information, 
achieved with neural networks (Lee et al. 1993) in the former 
and with SVM classifiers in the latter. In both cases, a sequence 
of nine opening and closing morphological operations has been 
subsequently applied to regularize and improve classification 
results, in a step which could be comparable to the spatial 
regularization described in Section III-B. In the case of (Li 
2010), we take into account the results obtained with 
multinomial logistic regression after the collection of both 
labeled (L) and unlabeled (U) samples, with U = 2L, before the 
integration of additional information through a segmentation 
step. Results summarized in Tables II and III show the proposed 
approach to be competitive both in terms of classification 
accuracy and number of training samples needed, with results 
reported in Synergetics (f) outperforming the competitors. 
 
 

4. CONCLUSION AND OUTLOOK 

We proposed a novel classification algorithm based on the 
principles of synergetics theory. Operations are performed in 
low dimensional order parameter spaces defined by the classes 
of interest. The classification scheme includes a flexible training 
step to improve class weighting as well as spatial regularization. 
The proposed classification approach combines different well 
known (hyperspectral) techniques.  
• The normalization of the prototype vectors lowers different 

illumination influences as only the direction of the 
prototype vectors in the feature space significantly 
influences the results. This is similar to the well-known 
Spectral Angle Mapper (SAM). 

• Orthogonal subspace projection leads to an optimal (in the 
sense of least squares minimization) representation of the 
feature vector living in the subspace spanned by the 
prototype vectors.  

• Similar to spectral unmixing techniques the projected 
feature vector is expanded in the sub-space of the 
prototype vectors. The abundance values are related to the 
composition of the feature vector by the prototype vectors. 
The highest abundance value defines the classification 
result. 

In this paper we used an approximation of the synergetics 
method using only the linear term. The non-linear terms, 
representing the interactions and competitions between the 
selected prototypes, should be investigated in further 
experiments.  
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