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ABSTRACT: 

 

This paper presents an automated approach for efficient detection of building regions in complex environments. We investigate the 

shadow evidence to focus on building regions, and the shadow areas are detected by recently developed false colour shadow 

detector. The directional spatial relationship between buildings and their shadows in image space is modelled with the prior 

knowledge of illumination direction. To do that, an approach based on fuzzy landscapes is presented. Once all landscapes are 

collected, a pruning process is applied to eliminate the landscapes that may occur due to non-building objects. Thereafter, we benefit 

from a graph-theoretic approach to accurately detect building regions. We consider the building detection task as a binary 

partitioning problem where a building region has to be accurately separated from its background. To solve the two-class partitioning, 

an iterative binary graph-cut optimization is performed. In this paper, we redesign the input requirements of the iterative partitioning 

from the previously detected landscape regions, so that the approach gains an efficient fully automated behaviour for the detection of 

buildings. Experiments performed on 10 test images selected from QuickBird (0.6 m) and Geoeye-1 (0.5 m) high resolution datasets 

showed that the presented approach accurately localizes and detects buildings with arbitrary shapes and sizes in complex 

environments. The tests also reveal that even under challenging environmental and illumination conditions (e.g. low solar elevation 

angles, snow cover) reasonable building detection performances could be achieved by the proposed approach. 

 

1. INTRODUCTION 

Space-borne imaging is a standard way of acquiring information 

about the objects on the Earth surface. Today, the information 

obtained is rather diverse and high-quality due to the advanced 

capabilities of satellite imaging such as the availability of sub-

meter resolution optical sensors, broadened spectral sensitivity, 

and increased data availability. Thus, satellite images are one of 

the most important data input source to be utilized for the 

purpose of object detection.  
 

It is a fact that most of the human population lives in urban and 

sub-urban environments. Therefore, the detection of man-made 

features from satellite images is of great practical interest for a 

number of applications such as urban monitoring, change 

detection, estimation of human population etc. In an early work, 

Huertas and Nevatia (1988) emphasized the importance of the 

automation for the detection, and they also stated the major 

task: the extraction and description of man-made objects, such 

as buildings. Up to now from their early paper, various 

researchers belonging to different scientific communities 

involved for the same task, and accordingly, a significant 

number of research studies have been published. Since this 

paper is devoted to the automated detection of buildings from a 

single optical image, we very briefly summarize the previous 

studies aimed to automatically detect buildings from monocular 

optical images. 
 

The pioneering studies for the automated detection of buildings 

were in the context of single imagery, in which the low-level 

features were grouped to form building hypotheses (e.g. Huertas 

and Nevatia, 1988; Irvin and Mckeown, 1989). Besides, a large 

number of methods proposed substantially benefit from the cast 

shadows of buildings (e.g. Huertas and Nevatia, 1988; Irvin and 

Mckeown, 1989; McGlone and Shufelt, 1994; Lin and Nevatia, 

1998; Peng and Liu, 2005; Katartzis and Sahli, 2008; Akçay 

and Aksoy, 2010). Further studies devoted to single imagery 

utilized the advantages of multi-spectral evidence, and 

attempted to solve the detection problem in a classification 

framework (e.g. Benediktsson et al., 2003; Lee et al., 2003; 

Shackelford and Davis, 2003; Ünsalan and Boyer, 2005; 

Inglada, 2007; Senaras et al., 2013; Sümer and Turker, 2013). 

Besides, approaches like active contours (e.g. Peng and Liu, 

2005; Cao and Yang, 2007; Karantzalos and Paragios, 2009; 

Ahmadi et al., 2010), Markov Random Fields (MRFs) (e.g. 

Krishnamachari and Chellappa, 1996; Katartzis and Sahli, 

2008), graph-based (e.g. Kim and Muller, 1999; Sirmacek and 

Unsalan, 2009; Izadi and Saeedi, 2012) and kernel-based 

(Sirmacek and Unsalan, 2011) approaches were also 

investigated. 
 

In this paper, we present an automated approach for the 

detection of building regions from single optical satellite 

imagery. To focus on building regions, we exploit the cast 

shadows of buildings, and the shadow areas are detected by 

recently proposed false colour shadow detector (Teke et al., 

2011). The directional spatial relationship between buildings 

and their shadows in image space is modelled with the prior 

knowledge of illumination direction. To do that, an approach 

based on fuzzy landscapes is presented. Once all landscapes are 

collected, a pruning process is applied to eliminate the 

landscapes that may occur due to non-building objects. 
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Thereafter, we benefit from a graph-theoretic approach to 

accurately detect building regions. In this paper, we consider the 

building detection task as a binary partitioning problem where a 

building region has to be accurately separated from its 

background. One of our insights is that such a problem can be 

formulated as a two-class labelling problem (building/non-

building) in which a building class in an image corresponds 

only to the pixels that belong to building regions, whereas a 

non-building class may involve pixels that do not belong to any 

of building areas (e.g., vegetation, shadow, and roads). To solve 

the two-class partitioning, an iterative binary graph-cut 

optimization (Rother et al., 2004) is carried out.  This 

optimization is performed in region-of-interests (ROIs) 

generated automatically for each building region, and assigning 

the input requirements of the iterative partitioning in an 

automated manner turns the framework into a fully 

unsupervised approach for the detection of buildings. 
 

The individual stages of our approach will be described in the 

subsequent section. Some of these stages are already well-

described in Ok et al. (2013), and therefore, these stages are 

only revised here. Besides, this paper extends our previous work 

from two aspects. First, we aim to improve the pruning step 

before the detection of building regions. Because water bodies 

appear dark both in visible and NIR spectrum, the shadow 

detector utilized detects water bodies as shadow. To mitigate 

this problem, we extend the pruning step in which we 

investigate the length of each shadow component in the 

direction of illumination by enforcing a pre-defined maximum 

height threshold for buildings. In this way, we eliminate the 

landscapes generated from large water bodies before the 

detection of building regions. Second, we improve the way used 

to generate ROIs. In our previous work, the bounding box of 

each ROI was extracted automatically after dilating the shadow 

regions. However, we realized that this might cause large ROI 

regions particularly where the cast shadows of multiple building 

objects are observed as a single shadow region. To avoid this 

problem, in this paper, we generate ROIs from the foreground 

information extracted from the shadow regions, thereby 

allowing us to better focus on building regions and their close 

neighbourhood. 
 

The remainder of this paper is organized as follows. The 

approach is presented in Section 2. The results of the approach 

are given and discussed in Section 3. The concluding remarks 

are provided in Section 4. 
 

2. BUILDING DETECTION 

2.1 Image and Metadata 

The approach requires pan-sharped multi-spectral (B, G, R, and 

NIR) ortho-images. We assume that the metadata files 

providing information about the solar angles (azimuth and 

elevation) of the image acquisition are also attached to the 

images.  By definition, the solar azimuth angle (A) in an ortho-

rectified image space is the angle computed from north in a 

clockwise direction, whereas the solar elevation angle (ϕ) is the 

angle between the direction of the geometric centre of the sun 

and the horizon.  
 

2.2 The Detection of Vegetation and Shadow Regions 

Normalized Difference Vegetation Index (NDVI) is utilized to 

detect vegetated areas. The index is designed to enhance the 

image parts where healthy vegetation is observed; larger values 

produced by the index in image space most likely indicate the 

vegetation cover. We use the automatic histogram thresholding 

based on the Otsu’s method (Otsu, 1975) to compute a binary 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. (a, d) Geoeye-1 pan-sharped images (RGB), the (b, e) 

vegetation masks (MV), and (c, f) shadow masks (MS). 

 

vegetation mask, MV (Fig. 1b, e). A new index is utilized to 

detect shadow areas (Teke et al., 2011). The index depends on a 

ratio computed with the saturation and intensity components of 

the Hue-Saturation-Intensity (HSI) space, and the basis of the 

HSI space is a false colour composite image (NIR, R, G). To 

detect the shadow areas, as also utilized in the case of 

vegetation extraction, Otsu’s method is applied. Thereafter, the 

regions belonging to the vegetation cover are subtracted to 

obtain a binary shadow mask, MS (Fig. 1c, f). 
 

2.3 The Generation and Pruning of Fuzzy Landscapes 

Given a shadow object B (e.g. each 8-connected component in 

MS) and a non-flat line-based structuring element         , the 

landscape βα (B) around the shadow object along the given 

direction α can be defined as a fuzzy set of membership values 

in image space (Ok et al., 2013): 
 

  ( )  (             )     .        (1) 
 

In Eq. 1, Bper represents the perimeter pixels of the shadow 

object B, BC is the complement of the shadow object B, and the 

operators   and ∩ denote the morphological dilation and a 

fuzzy intersection, respectively. The landscape membership 

values are defined in the range of 0 and 1, and the membership 

values of the landscapes generated using Eq. 1 decrease while 

moving away from the shadow object, and bounded in a region 

defined by the object’s extents and the direction defined by 

angle α. In Eq. 1, we use a line-based non-flat structuring 

element          generated by combining two different 

structuring elements with a pixel-wise multiplication ( * ): 
 

                     .  (2) 
 

In Eq. 2,      is an isotropic non-flat structuring element with 

kernel size κ, and the decrease rate of the membership values 

within the element is controlled by a single parameter σ 
 

    ( )   
 (

‖  ⃗⃗⃗⃗  ⃗‖

 
)
   {    

 ‖  ⃗⃗⃗⃗  ⃗‖

 
}  , (3) 

where ‖  ⃗⃗⃗⃗ ‖ is the Euclidean distance of a point x to the centre 

of the structuring element. On the other hand, the flat 

structuring element        is responsible to provide directional 

information  ( ) where L denotes the line segment and α is the 

angle where the line is directed 
 

      ( )       (  
  (   )

 
) ( )   , (4) 

where the round(.) operator maps the computed membership 

values to the nearest integer and θα (x,o) denotes the angle 
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differences computed between the unit vector along the 

direction α and the vector from kernel centre point (o) to any 

point x on the kernel. In this paper, we utilized the parameter 

combination κ = 40 m and σ = 100 which successfully 

characterizes the neighbourhood region of a building region.  
 

During the pruning step, we investigate the vegetation evidence 

within the directional neighbourhood of the shadow regions. At 

the end of this step, we remove the landscapes that are 

generated from the cast shadows of vegetation canopies. To do 

that, we define a search region in the immediate vicinity of each 

shadow object by applying two thresholds (Tlow = 0.7, Thigh 

=0.9) to the membership values of the fuzzy landscapes 

generated. Once the region is defined, we search for vegetation 

evidence within the defined region using the vegetation mask, 

MV, and reject a fuzzy landscape region generated from a cast 

shadow if there is substantial evidence of vegetation (≥ 0.7) 

within the search region (Fig. 2).  
 

We assess the height difference of the objects compared to the 

terrain height to separate the landscapes of building and other 

non-building objects. Based on the assumption that the surfaces 

on which shadows fall are flat, it is possible to investigate the 

length of the shadow objects in the direction of illumination to 

enforce a pre-defined height threshold value. To do that, for a 

given solar elevation angle (ϕ) and height threshold (TH), we 

compute the shadow length (LH) that should be cast by a 

building: LH = TH / tan(ϕ). Thereafter, we generate a directional 

flat structuring element whose length is equal to LH in the 

direction of illumination. Since the perimeter pixels of the 

shadow objects are already computed (Bper), for each shadow 

object, we use a directional flat structuring element to search the 

number of perimeter pixels that satisfies the length LH. In this 

study, we apply two height thresholds two limit the height of 

building regions. The lower threshold   
  = 3 m eliminates the 

fuzzy landscapes arise due to short non-building objects such as 

cars, garden walls etc., and if none of the perimeter pixels of a 

shadow object is found to be satisfying   
 , the generated fuzzy 

landscape is rejected. The upper threshold   
  = 50 m discards 

the fuzzy landscapes generated from large dark regions such as 

water bodies which are incorrectly identified as shadow region 

by the shadow detector (Fig. 2f). To do that, we eliminate the 

landscapes if at least one of the perimeter pixels of a shadow 

object satisfies   
 . 

 

2.4 Detection of Building Regions using Iterative Graph-cuts 

In this paper, we consider the building detection task as a two-

class partitioning problem where a given building region 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. (a, d) Geoeye-1 pan-sharped images (RGB). The fuzzy 

landscapes generated using the shadow masks provided in Fig. 

1c, f are illustrated in (b, e), respectively. The fuzzy landscapes 

after applying the pruning step are shown in (c, h). 

has to be separated from its background accurately 

(building/non-building). Therefore, the class building in an 

image corresponds only to the pixels that belong to building 

regions, whereas the class non-building may involve pixels that 

do not belong to any of building areas (e.g. vegetation, shadow, 

roads etc.). To solve the partitioning, we utilized the GrabCut 

approach (Rother et al., 2004) in which an iterative binary-label 

graph-cut optimization is performed. 
 

GrabCut is originally semi-automated foreground/background 

partitioning algorithm. Given a group of pixels interactively 

labelled by the user, it partitions the pixels in an image using a 

graph-theoretic approach. Given a set of image pixels   
(          )  in an image space, each pixel has an initial 

labelling from a trimap             , where    and    

represent the background and foreground label information 

provided by the user respectively, and    denotes the unlabelled 

pixels. In addition, each pixel has an initially assigned value 

  (          ) corresponding to background or foreground 

where          and the underline operator indicates the 

parameters to be estimated/solved. At the first stage of the 

algorithm, two GMMs with K components for the foreground 

(KF) and the background classes (KB) are constructed from the 

pixels manually labelled by the user. Let us define   
             with            as the vector representing 

the mixture components for each pixel. Then, the Gibbs energy 

function for the partitioning can be written as 

 

 (       )   (       )   (   )  (5) 

 

where   denotes the probability density function to be obtained 

by mixture modeling for each pixel. In Equ. 5,  (       ) 

denotes the fit of the background/foreground mixture models to 

the data   considering   values, and defined as 

 

 (       )   ∑  (          )   (6) 

 

where  (          ) favor the label preferences for each pixel 

zn based on the observed pixel values. On the other hand, 

 (   ) is the boundary smoothness and is written as 

 

 (   )    ∑ [     ]   ‖     ‖ 

(   )   (7) 

 

where the term [     ]  can be considered as an indicator 

function getting a binary value 1 if       , and 0 if      , 

C is the set of neighboring pixel pairs computed in 8-

neighborhood, β and γ1 are the constants determining the degree 

of smoothness. The smoothness term β is computed 

automatically after evaluating all the pixels in an image, and the 

other smoothness term γ1 is fixed to a constant value (that is 50) 

after investigating a set of images. To complete the partitioning 

and to estimate the final labels of all pixels in the image, a 

minimum-cut/max-flow algorithm is utilized. Thus, the whole 

framework of the GrabCut partitioning algorithm can be 

summarized as a two-step process (Rother et al., 2004): 
 

Initialization: 

(i) Initialize   ,   , and    from the user.  

(ii) Set      for n     , and      for     , complement 

of the background. 

(iii) Initialize mixture models for   and   . 
 

Iterative minimization: 

(iv) Assign GMM components for each   in    , are assigned. 

(v) Extract GMM parameters from data z. 

(vi) Solve the optimization using min-cut/max-flow  

(vii) Repeat steps (iv)-(vi) until convergence. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21 – 24 May 2013, Hannover, Germany

271



 

As can be seen from (i), the initialization of the iterative 

partitioning requires user interaction. The pixels corresponding 

to foreground (TF) and background (TB) classes must be labelled 

by the user, and after that, the rest of the pixels in an image is 

partitioned. In this part, we integrate the iterative partitioning 

approach to an automated building detection framework. We 

term TF to the image pixels that are most likely to belong to 

building areas. On the other hand, TB of an image corresponds 

to the pixels of non-building areas. We present a shadow 

component-wise approach to focus on the local neighbourhood 

of the buildings to define TF. It is a basic common fact of all 

images is that the shadows cast by building objects are located 

next to their boundaries (Fig. 3a). Thus, TF can be extracted 

automatically from the directional neighbourhood of each 

shadow component with the previously generated fuzzy 

landscapes. To do that, we define the TF region in the vicinity of 

each shadow object whose extents are outlined after applying a 

double thresholding (η1 = 0.9, η2 = 0.4) to the membership 

values of the fuzzy landscape generated (Fig. 3d). To acquire a 

fully reliable TF region, a refinement procedure that involves a 

single parameter, shrinking distance (d = 2 m), is also 

performed (Ok et al., 2013).  
 

In this study, we present a region-of-interest (ROI) based 

iterative partitioning. In Ok et al. (2013), we performed the 

iterative partitioning locally for each shadow component in a 

bounding box covering only a specific ROI region whose 

extents were extracted automatically after dilating the shadow 

region. The dilation was performed with a flat line kernel 

defined in the opposite direction of illumination, and since the 

ROI must include all parts of a building to be detected, the size 

of the building in the direction of illumination was taken into 

account. During the generation of the ROIs, the size was 

controlled by a single dilation distance parameter, ROI size (= 

50 m), which was also defined in the opposite direction of 

illumination. The bounding boxes generated by dilating the 

shadow components works well for most of the cases; however 

for certain conditions (e.g. acute solar elevation angles, dense 

environments etc.), it might cause large ROI regions to be 

produced for multiple building objects (Fig. 4c). To avoid this 

problem, as original to this work, we generate ROIs from the 

foreground information TF (Fig. 4d). Since the generated TF 

regions are separated for such cases, this provides an 

opportunity to define the ROIs in a separate manner (Fig. 4f). 

Thus, this strategy allows us to better focus on individual 

building regions and their close neighbourhood independent 

from the shadow component utilized. 
 

Once the bounding box of a specific ROI is determined, we 

automatically set up the pixels corresponding to background 

information (TB) within the selected bounding box. To do that, 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) Geoeye-1 image (RGB), (b) the detected shadow 

(blue) and vegetation (green) masks. (c) Fuzzy landscape 

generated from the shadow object with the proposed line-based 

non-flat structuring element, (d) the final foreground pixels (TF) 

overlaid with the original image. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. (a) Geoeye-1 image (RGB), (b) a single shadow 

component detected, and (c) the large ROI region generated. (d) 

The foreground information TF (without refinement) generated 

from the shadow component in (b). (e) One of the TF regions 

and (f) the ROI formed for that region after dilation. 

 

we search for the shadow and vegetation evidences within the 

bounding box and we label all those areas as TB. In addition, we 

also label the regions outside the ROI region within the 

bounding box as TB since we only aim to detect buildings within 

the ROI region for a given foreground information.  
 

Finally, we remove the small-sized artefacts that may occur 

after the detection stage. To do that, a threshold (Tarea = 30 m2) 

is employed to define the minimum area enclosed by a single 

building region. 
 

3. RESULTS AND DISCUSSION 

The test data involve images acquired from two different 

satellites (QuickBird and Geoeye-1) which are capable of 

providing sub-meter resolution imagery, and all images are 

composed of four multi-spectral bands (R, G, B and NIR) with a 

radiometric resolution of 11 bits per band. The assessments of 

the proposed approach are performed over 10 test images which 

differ from their urban area and building characteristics as well 

as from their illumination and acquisition conditions. The first 

three test images (#1-3) belong to a QuickBird image, whereas 

the rest (#4-10) is selected from different Geoeye-1 images. The 

solar elevation angles tested range between 21.54° and 78.12° 

and the images were acquired with off-nadir angles of at most ≈ 

18 degrees. To assess the quality of our results, they are 

compared to reference data. The precision, recall and F1-score 

(Aksoy et al., 2012; Ok et al., 2013) performance measures are 

determined both on a per-pixel and per-object level. For the 

object based evaluation, a building region is considered to be a 

true positive if 60% of its area is covered by a building region in 

the reference. 
 

We visualize the detection results in Fig 5, and according to the 

results presented, the developed approach seems to be robust 

and the regions detected are found to be satisfactory. The 

building regions are well detected despite the complex 

characteristics of buildings in the test images, e.g. roof colour 

and texture, shape, size and orientation. The numerical results in 

Table 1 favour these facts. Considering the per-pixel evaluation, 

overall mean ratios of precision and recall are computed as 

79.1% and 85.5%, respectively. The computed pixel-based F1-

score for all test images is around 82%. In view of the per-

object evaluation, overall mean ratios of precision and recall are 

computed as 92.8% and 79.9%, respectively. This corresponds 

to an overall object-based F1-score of approximately 86%. If the 

complexities of the test images and the involved imaging 

conditions are jointly taken into consideration, we believe that 

this is a promising building detection performance.  
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Figure 5. (first column) Test dataset (#1-10), (second column) 

the results of per-pixel evaluation, and (third column) the results 

of per-object evaluation. Green, red and blue colours represent 

true-positive, false-positive and false-negative, respectively. 

Table 1. Performance results of the proposed approach. 

ID 

Performance (%) 

Per-Pixel Level Per-Object Level 

Precision Recall 
F1-

score 
Precision Recall 

F1-

score 

#1 89.6 95.6 92.5 100 93.9 96.8 

#2 72.5 89.6 80.2 97.2 85.4 90.0 

#3 64.8 95.8 77.3 78.6 91.7 84.6 

#4 82.7 90.2 86.3 95.8 86.3 90.8 

#5 74.2 76.4 75.3 98.6 75.5 85.5 

#6 79.6 90.1 84.5 100 76.9 87.0 

#7 78.4 81.6 80.0 77.8 76.1 76.9 

#8 78.3 83.1 80.6 97.3 83.7 90.0 

#9 87.0 87.7 87.3 76.4 79.7 78.0 

#10 40.6 63.5 49.6 73.7 60.9 66.7 

Total  79.1 85.5 82.2 92.8 79.9 85.9 

 

The lowest precision and recall ratios for both per-pixel and per-

object assessment are obtained for test image #10. Actually, this 

is not surprising since that image is acquired in winter season 

with a very low solar elevation angle (21.54°). Thus, the region 

is covered by snow. This fact and the fact that the low solar 

elevation angle causes severe shading effects on building 

rooftops (especially for buildings having gable roof styles with 

specific orientation) limit the detection. Besides, it is rather 

difficult to detect shadow areas in a snow covered image 

because the cast shadows of buildings fall over a bright colour 

may significantly reduce the saturation component of the 

shadow region. As a result, the effectiveness and the 

performance of the index used to detect shadow areas reduce 

dramatically, which also have a major influence on the final 

performance of the proposed approach. The second lowest 

precision performance of per-pixel evaluation is achieved for 

test image #3 and the main reason is the two large bridges used 

for vehicular traffic on the upper-right corner of the image.  The 

height threshold   
  works well to eliminate the landscapes 

generated from non-building objects since the shadows of these 

objects generally have height differences less than 3m compared 

to terrain height. However, in certain cases such as large 

bridges, the height of non-building objects exceeds the given 

threshold. As a result, it is not possible to avoid such cases and 

some parts of the road segments might be labelled as building 

regions. Besides, our approach may over-detect some building 

boundaries. This is due to two specific reasons. First, some parts 

of the building boundaries may have very smooth transition 

between their surroundings. Second, a building may involve 

several roof parts that are identical to their surroundings 

although the main colour of the rooftop is distinguishable from 

its background. Nevertheless, we think that most of the over-

detections can be corrected with further high-level processing. 
 

The results show that the approach presented is generic for 

different roof colours, textures and types, and has the ability to 

detect arbitrarily shaped buildings in complex environments. 

According to the results provided in Table 1, the highest F1-

scores are achieved for test image #1 where the buildings are 

formed in a single-detached style. Besides, for most of the test 

images, our approach provides quite satisfactory object-based 

ratios. Apparently, this is due to the reason that our approach 

labels a region as building only if a valid shadow region is 

detected. Therefore, we can conclude that the presented 

approach for building detection is robust from an object-based 

point-of-view. Besides the mentioned advantages, the proposed 

approach is also time-efficient. The images are processed on a 

PC with a CPU Intel i5 2.6GHz and 4GB RAM, and the 

processing requires less than 30 seconds for each image on 

average. 
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4. CONCLUSIONS 

In this paper, a novel approach is presented to detect building 

regions from a single high resolution multispectral image. First, 

vegetation and shadow areas are extracted with the help of the 

multi-spectral information widely accessible to the most of the 

high resolution satellite images. The spatial relationship 

between buildings and their cast shadows is modelled by means 

of a fuzzy landscape approach and a pruning process is applied 

to eliminate the landscapes belonging to non-building objects. 

The final building regions are detected by iterative graph 

partitioning. In this study, the input requirements of the iterative 

partitioning are extracted automatically so that the framework 

turns out to be an efficient approach for the detection of 

buildings. Assessments performed on 10 test images selected 

from QuickBird and Geoeye-1 images reveal that the approach 

accurately localizes and detects buildings with arbitrary shapes, 

sizes, colours in complex environments. The tests also reveal 

that even under challenging environmental and illumination 

conditions, reasonable building detection performances could be 

achieved by the proposed approach. 
 

In the near future, we will focus to reduce the limitations of the 

proposed approach. A major task is to separate large bridges 

from buildings; therefore, we plan to develop and integrate a 

different method that is particularly designed for road and/or 

bridge detection. In this way, the road segments that are 

erroneously labelled due to large bridges can be identified and 

eliminated. As a different work, we plan to extend the graph-cut 

optimization in a multi-label manner, and this improvement will 

further improve the results of the presented approach. An 

additional post-processing step that involves the simplification 

of the outlines of the detected building regions is also a required 

task and we will pursue in the near future. 
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