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ABSTRACT: 

Coastal areas are characterized by high spatial and temporal variability. In order to detect undesired changes at early stages, enabling 

rapid countermeasures to mitigate or minimize potential harm or hazard, a recurrent monitoring becomes necessary. In this paper, we 

focus on two monitoring task: the analysis of morphological changes and the classification and mapping of habitats. Our concepts are 

solely based on airborne lidar data which provide substantial information in coastal areas. For the first task, we generate a digital 

terrain model (DTM) from the lidar point cloud and analyse the dynamic of an island by comparing the DTMs of different epochs 

with a time difference of six years. For the deeper understanding of the habitat composition in coastal areas, we classify the lidar 

point cloud by a supervised approach based on Conditional Random Fields. From the classified point cloud, water-land-boundaries 

as well as mussel bed objects are derived afterwards. We evaluate our approaches on two datasets of the German Wadden Sea.  

 

 

1. INTRODUCTION 

The Wadden Sea in the North Sea and the barrier islands are a 

coastal zone with high spatial and temporal variations. The 

intertidal zone is located between a section of the coast of north 

western continental Europe and the Frisian Islands in the 

southern part of the North Sea. It covers about 10,000 km² and 

is separated from the North Sea by a barrier island system and 

ebb-tidal deltas over three quarters of its length. The Wadden 

Sea consists of tidal mudflats, tidal channels, marshes, and other 

wetlands; it is a unique ecosystem which is characterized by a 

high biodiversity. For these reasons the German and the Dutch 

parts of the Wadden Sea were inscribed on UNESCO's World 

Heritage List in 2009. The uniqueness of its habitats is 

accompanied by a high responsibility towards this area and 

requires a clear understanding of the Wadden Sea’s 

development.   

 

In the framework of a German research project called Scientific 

Monitoring Concepts for the German Bight (WIMO, 2013), 

new approaches for a sustainable monitoring of coastal areas by 

remote sensing data are investigated. For this purpose, three 

types of remote sensing data are used: SAR (synthetic aperture 

radar) data, optical images, and airborne laser scanning data, 

also called lidar (light detection and ranging). In this paper, we 

focus on the analysis of lidar data which provide substantial 

information for two monitoring tasks: change detection of the 

morphology and the classification of habitats.  

 

Firstly, highly accurate digital terrain models (DTMs) of the 

Wadden Sea are required for a systematic monitoring of 

morphological changes. Lidar is a standard method for DTM 

generation in coastal zones. In comparison to echo sounding 

systems, lidar is feasible for large areas and delivers dense and 

accurate data. However, only the eulittoral zone can be covered 

by standard laser because the near-infrared laser pulses are not 

able to penetrate water which remains in some tidal channels 

even during low tide. Thus, gapless DTM modelling usually 

requires a combination of height data gathered by echo 

sounding in the sublittoral zone and airborne lidar systems in 

the eulittoral zone. In the future the problem of the combination 

of two different data sources could be overcome to some extent 

by laser bathymetry. Such modern devices operate with a green 

laser signal that is capable to penetrate into the water column 

(e. g. Mandlburger et al., 2011). However, since the accessible 

depth underneath the water surface depends on turbidity, such 

technique is better suited for clear waters and not necessarily for 

the Wadden Sea. In order to detect morphological changes, 

DTMs of different epochs can be compared. In coastal zones, 

height differences are caused by tidal flows, storms, strong 

wind, and human activities like dredging or deepening of 

channels. For coast protection and the investigation of 

segmentation and erosion, change detection by airborne lidar 

becomes substantial.  

 

Secondly, the classification and mapping of habitats in Wadden 

Sea areas is an important task of marine monitoring. This has 

been shown to be possible with spectral information from 

remote sensing image data (Klonus et al., 2012). Due to a lack 

of spectral features in the monochromatic lidar signal and the 

common lack of auxiliary aerial photos to support the 

classification if the flights are performed during night time, the 

distinction between habitats based on lidar becomes a difficult 

task. Given these limitations of the data, only habitats 

characterized by their surface roughness, e.g. mussel beds, can 

be expected to be distinguished. The detection of these areas is 

of great interest because the cultivation of mussels in the 

Wadden Sea and the import of exotic species influences the 

local morphology and changes the sediment characteristics 

(Marencic & de Vlas, 2009). The second important 

classification task is the detection of water areas. Due to the 

reflection of the near-infrared laser pulses at water surfaces, the 

elevation measured by standard lidar does not represent the 

actual terrain level underneath as would be desired. The 

generation of a DTM thus requires the detection of water 

surfaces and the use of an additional data source, e. g. sonar, to 

complete the DTM in these parts.  
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In this paper, we investigate lidar data acquired over coastal 

areas in the southeastern part of the North Sea which are used 

for two substantial tasks in marine monitoring. On the one hand, 

we analyse two DTMs with a time difference of six years in 

order to detect morphological changes on an island (Section 2). 

On the other hand, we classify the lidar point cloud and derive 

object boundaries in order to contribute to a deeper 

understanding of the habitats in coastal areas (Section 3).  

 

 

2. COMPARISON OF DIGITAL TERRAIN MODELS 

FOR DIFFERENT EPOCHS 

For the monitoring of coastal areas based on lidar data, DTMs 

of different epochs are compared. We use two datasets of an 

island which were acquired with a time difference of six years. 

We analyse especially the seaside where larger changes in the 

topography can be expected.   

 

2.1 Method 

The DTMs are calculated by a hierarchic robust interpolation.  

The approach is based on linear prediction (Kraus & Pfeifer, 

1998) and iteratively fits an approximated surface to the point 

cloud. Each point is weighted dependent on its residuals. 

Whereas points with positive residuals above the average 

surface are indicated to belong to objects and receive a low 

weight, points below the surface are more likely to be ground 

points and are assigned a high weight. In this way, the surface 

will be a better and better approximation of the terrain, whereas 

vegetation and buildings are eliminated from the dataset.  

 

We calculate the DTM in a grid with a width of 1m for each 

epoch. Afterwards, the differences between both DTMs are 

determined. We also derive edges from each DTM using a 

Laplacian of Gaussian filter with σ = 2 pixel. In this way, 

changes of significant structures in the topography such as 

break lines can be analysed. 

 

2.2 Test site 

The test site is located on the East Frisian Island Juist in the 

German North Sea. The island has a length of 17 km and is 

between 500 m and 1 km wide. Because erosion was observed 

in the west and the north of Juist during the last years, we 

analyse these parts of the island and choose two different test 

sites (Fig. 1). In the north we analyse an area of 400 m x 

2700 m, the test site in the west has a size of 1050 m x 1150 m.  

 
Figure 1. Orthoimage of the island Juist and the test sites in the 

north and the west of the island which are outlined.   

 

 

We compare datasets from two different epochs. The first one 

was acquired by an ALTM2050 sensor in spring 2004. The 

second dataset is from spring 2010 using a Harrier 56 sensor.  

 

2.3 Results 

For the monitoring of the topography the DTM of 2004 is 

subtracted from the DTM of 2010. After six years significant 

changes in the topography can be observed. Fig. 2 shows the 

differences of the heights between both epochs in the northern 

test site. Positive values indicate sedimentation and negative 

values represent erosion between the epochs. For most of the 

grid points the differences are low. In the northern test site 

86.2 % of all points have changes between -1 m and 1 m (Fig. 

3). The mean of the height differences is 0.2 m with a standard 

deviation of 1.5 m. However, especially in the dunes and at their 

borders higher differences can be observed. Here, the 

differences vary between -13.8 m and 8.5 m. Whereas 

sedimentations occur in the west, the land erodes in the east of 

this border. The erosion extends over a length of nearly 2 km 

and is 13.8 m in the maximum. This observation implies that the 

northern border shifted to the south. Considering the edges 

derived from the DTM, the amount of the shift can be 

calculated: it is up to some tens of meters (Fig. 4). To the north 

of the border, the test site covers coast and sea. Here, the 

comparison of both DTMs is of limited value due to varying 

water levels during the data acquisition. In some parts of the 

dunes significant increases of the heights of up to 8.5 m occur. 

The changes can be explained by anthropogenic activities in the 

context of coast protection. Due to continual decrease of sand in 

this part of the island during the last decades, several supporting 

measures have been performed. In consequence of a storm tide 

in the winter of 2006/07, in the south of the dune valleys were 

recently filled in with sand, which can be verified in the data. 

 

Figure 2. Differences between DTM 2010 and 2004 at the northern border of Juist.
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Figure 3. Histogram of the height differences in the northern 

test site with height variations between -13.8 m and 8.5 m 

(values <7m (0.35%) and >7m (0.06%) are not shown)   

 

 

In the western test site, the height differences between the DTM 

of 2004 and 2010 are lower. The values vary between -3.9 m 

and 3.4 m (Fig. 6). The mean of the differences is 0.05 m with a 

standard deviation of 0.35 m. At seaside, height differences 

might be caused by different water levels during the acquisition 

time. This assumption is confirmed by a constant height 

difference in the tidal channel in the south of the test site. 

However, the border of the island shows significant topographic 

changes. At the northern border, sedimentations between 2.0 m 

and 3.5 m occur over a length of 20 m. The height differences at 

the western border vary between 1.0 and 2.0 m.  Fig. 5 shows 

the results of the edge detection from both DTMs. In 

comparison to the northern test site the shift of the border is 

lower, it is in the range of few meters. Moreover, the edges 

move predominantly towards seaside between both epochs. 

   

 

 
Figure 4. Orthoimage of 2004 and edges derived from the DTM 

for the dataset of 2004 (green) and 2010 (red) at the northern 

border 

 

 
Figure 5. Edge image with the derived edges for 2004 (green) 

and 2010 (red) closed to the shoreline  

 

 
Figure 6. Differences between DTM 2010 and 2004 at the 

western border of Juist.  

 

 

3. CLASSIFICATION OF LIDAR DATA 

For the mapping of coastal areas, the lidar point cloud is 

classified in a supervised classification approach (Section 3.1). 

Each point is classified to one of the three classes water, 

mudflat and mussel bed. Afterwards object boundaries are 

calculated based on 2D binary images derived from the labeled 

point cloud. We describe the test site and the classification 

results in Sections 3.2 and 3.3.   

 

3.1 Method 

The classification method can be subdivided into three steps: 

Firstly, lidar features are derived from the point cloud. They are 

introduced in a classification based on Conditional Random 

Fields. We classify the data based on the raw lidar point cloud. 

Then, the labeled 3D point cloud is projected to a 2D label 

image and object boundaries are calculated.  

 

 

3.1.1 Feature extraction 

 

We adapted some of the LiDAR features proposed in Chehata et 

al. (2009) and expand the model by additional features for our 

classification task (Schmidt et al., 2012a). For each laser pulse, 

information about 3D coordinates and intensity are available for 

the backscattered signal. From the point cloud we use the 

following features: 

 

1) intensity (I) 

2) variance of I in a sphere of radius r; 

3) point elevation (E); 

4) variance of E in a vertical cylinder of radius r; 

5) average elevations and their differences for vertical 

cylinders with various radii; 

6) height above ground; 

7) approximated plane: sum of residuals, direction and 

variance of normal vector;  

8) principal curvatures, mean and Gaussian curvature; 

9) eigenvalue based features: 3 eigenvalues (λ1,λ2,λ3), 

sum (Ʃλ1, λ2, λ3), omnivariance, planarity, anisotropy, 

sphericity, eigenentropy, scatter (λ1/λ3);  

10) point density in a sphere of radius r  

7m 
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The features considering the local point distribution within a 

sphere or vertical cylinder are computed for multiple scales with 

radii r = 1, 2, 3, 4, and 5 m. 124 features are determined in total 

for each point. In order to minimize the complexity of the 

approach, we do not use all features and identify a 

representative set for our classification task instead. We analyse 

the influence of each feature on the classification result by a 

permutation importance measure (Breiman, 2001). For the 

importance measurement of a feature, its values are randomly 

permuted. In this way, feature values with low information for 

the classification are simulated. Then, the number of correctly 

classified points before and after permuting the feature values is 

compared. In case of a high difference between both results, the 

importance of this feature for the classification task is high. The 

importance can be determined for each class and for the overall 

classification. For our classification task, we consider features 

whose importances are high for the overall classification, and, 

as the mussel bed detection has proved to be the most 

challenging task in our previous work (Schmidt et al., 2012), 

those features which are relevant for the classification of mussel 

bed. Considering both criteria, we choose the following 14 

features for our classification: absolute height of a point and 

height variance (r = 4 m), average height (r = 4 m, r = 5 m), 

intensity variance (r = 2 m, r = 5m), point density (r = 1 m), the 

lowest eigenvalue (r = 2 m, r = 3 m), planarity (r = 4 m), 

Gaussian curvature (r = 4 m), direction (r = 1 m) and variance 

of normal vector (r = 1 m, r = 2 m).   

 

 

3.1.2 Conditional Random Fields 

 

CRFs provide a flexible framework for many classification 

tasks and were introduced for image labelling in Kumar & 

Hebert, 2006. The classification of point clouds based on CRF 

has been used for instance by Lim & Suter (2009) for the 

classification of terrestrial laser scanning data. The potential of 

CRFs for airborne laser scanning data was shown in Shapovalov 

et al. (2010) (segment-based) and in Niemeyer (2012) (point-

based).  

 

CRFs belong to the group of undirected graphical models. The 

underlying graph G(n, e) consists of nodes n and edges e. Here, 

the nodes correspond to the lidar points. Each node ni ∊ n is 

linked to its k nearest neighbours in 2D by edges. We assign a 

class label    from a given set of classes   to each lidar point 

based on the observed data x = [x1,x2,...xm]. The point cloud is 

classified by finding the optimal label configuration that 

maximizes the posterior probability P(C|x) of the point labels 

C=[C1,C2,...Cm] given x. The posterior probability can be 

modelled by 

 

       
 

    
                            

          

  

                                                                                                  (1) 

where Ni is the neighbourhood of each node ni. The two terms in 

the exponent are potentials which are explained in more detail at 

the end of the section. The posterior probability is normalised 

by the partition function Z(x) which is approximated during 

inference. 

 

In the inference step, the optimal label configuration is 

determined based on maximising P(C|x). Here we use loopy 

belief propagation (Vishwanathan et al., 2006), a standard 

iterative message passing algorithm for graphs with cycles, as 

implemented in Schmidt, M. (2012). The result is one 

probability value per class for each data point. By maximizing 

P(C|x) the optimal label configuration is estimated.  

 

The potentials of (1) are inferred based on a feature vector hi(x) 

which contains the lidar features described in Section 3.1.1. 

There are two potential terms: the association potential Ai(x,Ci) 

and the interaction potential Ii(x,Ci,Cj). They can be expressed 

by arbitrary classifiers. Following Kumar & Hebert (2006) we 

use a generalized linear model for both potentials. Then, the 

association potential Ai(x,Ci) which indicates the likelihood of a 

point ni belonging to a class    given the observations x can be 

expressed as 

 

              
         .                        (2) 

 

In (2) vector wl contains the weights of node features expanded 

by a quadratic feature mapping function Φ which increase the 

number of features to 120. The vector wl is determined by a 

training step. Such a vector is defined for each class l. The 

dependencies of a node ni from its adjacent node nj is modelled 

by comparing both node labels and considering the observed 

data x. We calculated an interaction feature vector µij(x) as the 

absolute difference of feature vectors of neighbouring nodes ni 

and nj, µij(x)=|hi(x)-hj(x)|. Analogous to the association 

potential, the interaction potential can be modelled being 

proportional to log P(Ci,Cj|µij(x)). We use a generalized linear 

model again: 

 

                               
                                    (3)  

 

where vl,k is the weight vector of the interaction features. Such a 

vector vl,k exists for each combination of classes (l, k). In the 

training process the optimal values for the weight vectors are 

derived from training data. The use of exact probabilistic 

methods for this is computationally intractable. Thus, they are 

replaced by approximate solutions. Here, we applied the 

gradient descent optimization method L-BFGS (limited memory 

Broyden–Fletcher–Goldfarb–Shanno) (Liu & Nocedal, 1989) 

for the minimization of the objective function f=-log(P(θ|x,C), 

where the parameter vector θ contains the weight vectors wl and 

vl,k.  

 

3.1.3 Extraction of boundaries 

 

From the classified point cloud, land-water-boundaries and 

boundaries of mussel beds, respectively, are derived in a post-

processing step. First, the labeled 3D point cloud is projected to 

a 2D label image. Then, binary images for the classes water and 

mussel bed are calculated, where nonzero pixels belong to an 

object and zero pixels to the background. We remove small 

objects and close small holes using a morphological filtering. 

From the binary image, the exterior boundaries of the objects 

and possible holes inside are determined.  

 

3.2 Test site 

For the classification of lidar data, we use the dataset of 2010 

that was also used for the DTM analysis (Section 2.2). Because 

we are interested in a mapping of the Wadden Sea for our 

second monitoring task, we investigate a test site located in the 

south of the East Frisian Island Norderney. It contains one big 

tidal channel from north to south and some smaller ones. 

Although the data were acquired during low tide, water still 

remains there, especially in the bigger tidal channels, whereas 

the smaller ones partly dry to muddy channel. In the western 

part of the tidal channel there are several mussel beds. Whereas 

the point density is mostly high, the dataset shows the typical 
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effect of lidar data acquired over water surfaces (and even areas 

with a small water film): the laser pulses are affected by 

specular reflection. Depending on the incidence angle the 

backscatter cannot be recorded by the sensor which leads to 

gaps in the dataset at the border of the flight strips.  

 

3.3 Results 

The outcome of the CRF-classification is a labeled 3D point 

cloud with three classes: mudflat, water, and mussel bed. The 

results are depicted in Fig. 7. During the graph generation each 

point is linked to its two nearest neighbours by an edge. For 

each point and for each edge we use the 14 features described in 

Section 3.1 and a quadratic feature space mapping  . For the 

training step we generate a manually labeled reference point 

cloud including all classes. We use approximately 10 % of the 

points from the dataset for training.  

 

We get the best results for water surfaces which are classified 

with correctness and completeness rates of 90.2 % and 95.1 %, 

respectively (Table 1). Some misclassifications occur near to 

the mudflat boundaries where local height differences are low. 

Because of different flight strips in the datasets and thus slightly 

different water levels caused by tidal effects during the 

acquisition times, the characteristics of water surfaces vary in 

the overlap of two strips which leads to some misclassification 

in these parts. For mudflat the correctness and the completeness 

rates are 89.3 % and 86.1%, respectively. False positives can be 

observed especially for points on rough mudflat structures 

which are incorrectly classified as mussel bed. In comparison to 

mudflat and water, the completeness and correctness rates of 

mussel bed are lower. Misclassifications are caused by similar 

feature characteristics of the point cloud on rough mudflat areas 

or near tidal channels where larger local height differences and 

deviations of neighbouring points from a local plane occur, too.  

 

In a post-processing step, object boundaries are calculated. By 

using a morphological filtering, data holes on water surfaces in 

the classification result are closed and single mudflat points 

which are depicted as mussel bed are eliminated. The resulting 

boundaries are shown in Figure 8. Due to not correctly 

classified water points in the overlapping part of two flight 

strips, the water surface of the big tidal channel is separated into 

two objects. Moreover, small holes still remain in the water 

surfaces. They could be eliminated by stronger smoothing.  

 

class mudflat water mussel bed 

correctness 89.3 % 90.2 % 60.1 % 

completeness 86.1 % 95.1 % 65.8 % 

 

Table 1. Correctness and completeness rate for the three classes. 

 

 

4. CONCLUSION 

In this paper, we proposed two case studies for monitoring tasks 

in coastal areas using lidar data: change detection in 

morphology, and classification of habitats. For the analysis of 

the morphology, we derived a DTM from the point cloud. By 

comparing DTMs of different epochs, changes in the terrain 

were investigated. We analysed data of an island acquired with 

a time difference of six years. On the borders and in the dunes, 

significant sedimentations and erosions of several meters can be 

observed. By comparing the edges derived from the DTMs, the 

shift of the northern border can be shown. Moreover, the filling 

of dune valleys as activities in the context of coast protection 

can be seen in the data.    

 
 

 
Figure 7. Reference data (top) and classified point cloud 

(bottom) with the classes water (blue), mudflat (yellow) and 

mussel bed (red). Areas with no return are coloured in white. 

 

 
Figure 8. Orthoimage and the generated object classes for water 

(blue) and mussel bed (red) 

 

 

For the second task, the lidar point cloud is classified by a 

supervised classification approach based on Conditional 

Random Fields. In this way, contextual knowledge is integrated 

in the classification method. We distinguished three classes 

namely mudflat, water, and mussel bed. The evaluation of the 

approach showed good results for the detection of water in lidar 

data. Only in the overlapping part of different flight strips some 

misclassifications are caused by tidal effects. The problem 

could be overcome by extracting features and classifying each 

flight strip separately. Based on local height differences, 

curvatures and deviations from a local plane, it is also possible 

to detect mussel beds in lidar data. However, it has been shown 

to be a challenging task. False positives occur on rough mudflat 

parts and due to significant variation of the mussel beds' size. 

Afterwards, the boundaries of water and mussel bed objects are 

derived from the lidar point cloud. The water-land-boundaries 

provide an important input value for terrain modelling. The 

boundaries of the mussel beds can be used for a habitat mapping 

of the Wadden Sea.  

  

In the future we intend to investigate the change detection on 

further test site, e.g. for the determination of the shift of tidal 
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channels. Moreover, we plan to combine our results with those 

obtained from optical and SAR images in order to establish a 

reliable concept for marine monitoring (Schmidt et al., 2012b), 

and to integrate texture features in the classification process.  
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