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ABSTRACT:

Accurate Digital Terrain Models (DTM) are inevitable inputs for mapping areas subject to natural hazards. Topographic airborne
laser scanning has become an established technique to characterize the Earth surface: lidar provides 3D point clouds allowing a fine
reconstruction of the topography. For flood hazard modeling, the key step before terrain modeling is the discrimination of land and
water surfaces within the delivered point clouds. Therefore, instantaneous shoreline, river borders, inland waters can be extracted as a
basis for more reliable DTM generation. This paper presents an automatic, efficient, and versatile workflow for land/water classification
of airborne topographic lidar data. For that purpose, a classification framework based on Support Vector Machines (SVM) is designed.
First, a restricted set of features, based only 3D lidar point coordinates and flightline information, is defined. Then, the SVM learning
step is performed on small but well-targeted areas thanks to an automatic region growing strategy. Finally, label probabilities given by
the SVM are merged during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that survey of
millions of points are labelled with high accuracy (>95% in most cases for coastal areas, and >89% for rivers) and that small natural
and anthropic features of interest are still well classified though we work at low point densities (0.5-4 pts/m2). Our approach is valid
for coasts and rivers, and provides a strong basis for further discrimination of land-cover classes and coastal habitats.

1 INTRODUCTION

1.1 Motivation for seashore and river monitoring

Climate change and global warming should lead to an increasing
number of severe storms, more significant winter rains, and sea
level rise in the forthcoming years. Coastal and river areas are
particularly at risk, but their physical characteristics are barely
described, especially their accurate topography, yet essential data
for forecasting and management purposes. Another need indeed
arises from statutory provisions: the European Water and Floods
Framework Directives (2000-2007) have influenced the strategies
for establishing prevention and protection policies by imposing
repeated area-wide surveying of all kinds of inland waters, rivers,
and high-staked catchment basins.
The characterization and quantification of coastal and river habi-
tats have been improving over the last decades due to synergistic
remote sensing techniques, that are able to deliver high-resolution
spatio-temporal by-products (Yang, 2008). In addition to provid-
ing some initial maps, remote sensing is also essential to monitor
and analyze the evolution of the measured physical characteris-
tics. Repetitive and up-to-date measurements are also crucial for
areas undergoing most changes that are flooding, erosion, accre-
tion or retreating such as beaches, cliffs or unstable slopes (Miller
et al., 2008; Addo et al., 2008).
For this purpose, the small-footprint airborne lidar technology ap-
pears to be attractive because it provides fine-scale Digital Terrain
Models (DTM) over large coverage. It allows to survey hundreds
of kilometers of shoreline and rivers with a high spatial resolution
within a few days only. Its very high vertical accuracy (<0.15 m)
has opened up new possibilities of tackling very precise and spe-
cific problems, that were impossible to deal with before (Hladik
and Alber, 2012; Collin et al., 2012).
In France, in addition to European Directives, the National Insti-
tute of Geographic and Forest Information (IGN) and the Marine
Hydrographic and Oceanographic Service of the Defence Min-
istry have initiate a national program, started in 2005, that aims to

create a three-dimensional model of the French coastline, called
Litto3D R© (Pastol, 2011). Lidar is currently used to produce a
continuous land-sea representation of the coast, allowing for ac-
curate manual shoreline mapping.
Generating DTM in coastal and river areas first requires the clas-
sification of water areas. Consequently, the aim of this paper is to
propose a workflow for water/land classification in topographic
lidar datasets, that is adapted to various landscapes.

1.2 Related works on water detection from lidar data

We focus on airborne topographic lidar data, that operates on the
near-infrared channel (NIR). There is an abundant literature on
shoreline extraction from Digital Terrain Models but only few
papers exists about direct water detection.
Methods based on lidar point clouds are divided into two main
approaches. First, segmentation of water surfaces can be based
on the recognition of specific patterns (breaklines, tidal channels
or gullies). For instance, the approach developed in (Brzank et
al., 2005) is based on the detection of vertical high frequencies
of the relief: planimetric lidar point distribution should be suf-
ficiently regular and water areas should be located in trenches.
Such assumption is efficient for many habitats but cannot be gen-
eralized. Conversely, Höfle et al. (2009) look for atypically large
triangles in a Triangular Irregular Network, which are a strong
hint about the presence of water. Indeed, the reflection properties
of water surfaces for NIR lidar beams are characterized by either
significant absorption or specular reflection resulting in numer-
ous non-recorded laser echoes.
Secondly, more general classifiers can be adopted. Since merely
height information is insufficient, additional information is in-
serted, namely lidar intensity and point density. Brzank et al.
(2008) used both features in a fuzzy logic classifier. The method
performs well for water/mudflat discrimination for various lidar
point densities but necessitates a preliminary object based analy-
sis. The authors also noted that calibration/correction steps should
be carried out to normalize the intensity feature. Even when
such steps are performed, with a rule-based approach, Höfle et
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al. (2009) note a poor discrimination between asphalt and wa-
ter surfaces. Their method requires the knowledge on the posi-
tion of the sensor, GPS timestamps and scan angle to model lidar
drop-outs. To cope with poor intensity values, the RGB channels
of an orthoimage are inserted in a Mean-Shift classifier (Lee et
al., 2012). The approach is restricted since the timing of opti-
cal data acquisition is critical and difficult to achieve over large
scales. More advanced lidar geometrical features are proposed
in (Schmidt et al., 2011), coupled with full-waveform attributes.
The authors adopted Conditional Random Fields in order to in-
troduce contextual knowledge, therefore improve classification,
and discriminate new classes (mudflat and mussel bed) (Schmidt
et al., 2012). Nevertheless, the approach is not conceivable for
large scale mapping since graphical models require significant
training and inference steps. Consequently, despite relevant ex-
isting works, none of these approaches can be adopted to deal
with both the large-scale issue and the automatic adaptiveness to
various landscapes.
A three-step strategy is adopted, and is explained in Section 2.
Section 3 describes the various areas of interest that have been
processed. Then, experimental results are presented and com-
mented in Sections 4 and 5. Finally, conclusions are drawn in
Section 6.

2 METHODOLOGY

2.1 Overall strategy

As we target an approach suitable both for coasts and rivers, a
supervised classifier is adopted. The core of the workflow is de-
signed in a 2D-raster mode in order to provide a fast classifica-
tion, with a tailored learning step. Furthermore, the approach is
fully automatic, parameter-free, and versatile: no multi-echo, in-
tensity, full-waveform or multi-spectral information is necessary,
making our work easy to reproduce. We note that our system
requires the setting of parameters at the different steps. The pa-
rameter values provided in the following are set for all our ex-
periments, i.e., they are not tuned on a per-dataset basis. The
processing chain can be divided into three steps.

1. Computation of features of interest. Six attributes are
designed for discriminating water areas. The 3D lidar at-
tributes are then interpolated in a 2D regular grid for large
scale processing (Section 2.2).

2. Learning procedure. The knowledge of the land/water in-
terface is used to define the training pixels the most likely to
belong to each class. However, as this delineation may not
be up-to-date or accurate enough, more representative train-
ing pixels are automatically selected using spatial reasoning
(Section 2.3).

3. Land/water classification. A supervised Support Vector
Machines (SVM) classifier is run on the pixels of the raster
grid. Results were finally regularized using probabilistic re-
laxation, taking into account the probabilities given by the
SVM classifier (Section 2.4).

SVM was selected because they are adapted to deal with high-
dimensional spaces and have shown considerable potential in the
supervised classification of remotely sensed data, with very lim-
ited training amount. In addition, they outperform standard clas-
sification methods, as demonstrated by several general or application-
driven comparative studies (Mountrakis et al., 2011), and in par-
ticular with airborne lidar data (Braun et al., 2011).

2.2 Discriminative lidar features and 2D interpolation

We have retained three families of features. They are based on (i)
the height, (ii) the local point density, and (iii) the local shape of
the 3D point neighborhood. To deal with any kind of lidar point
cloud, we have consciously discarded the intensity/amplitude echo-
based features, i.e., information about the position of the 3D point
within the current emitted lidar pulse. As a result, our method ap-
plies only to the 3D point coordinates.

2.2.1 Feature computation and 2D interpolation. The size
of a 3D point neighborhood is the single parameter to be tuned
in the feature computation stage. Given d the point cloud density
and n the minimal number of points needed to calculate robust
3D descriptors, the radius r is defined by r = (n/πd)1/2. In
practice, 10 points are sufficient. The mean density was between
1-4 pts/m2 for areas with equivalent surfaces of land and water.
Thus, r ∈ [1-1.8 m].
Furthermore, the interpolation of the 3D point cloud features on
a regular 2D grid allows to better handle the large data volume
and high dimensionality of the raw point clouds. The main areas
of interest are the land-water interface, and, in particular, shallow
waters. The larger the grid cell, the more inaccurate the classifi-
cation. Therefore, the point cloud is resampled at a resolution of
1 m. This is sufficient for retrieving the land/water interface with
a horizontal accuracy inferior to 2 m. The mean value of each
feature is selected as final descriptor.

2.2.2 Feature description. A first obvious attribute is the height
of the lidar point with respect to the geoid, HG. Nevertheless,
it does not always help to discriminate water points in inland ar-
eas.
However, near-infrared pulse penetrates very little in water vol-
umes, and therefore the 2D distribution of the lidar points can be
used to detect such surfaces. For wide laser pulse scan angles
(>15◦), part of the emitted radiation returning from water varies
significantly and may not be distinguished from the background
noise. Therefore, the point density is much lower in the tails of
the swath comparing to inland areas. Several 2D density-based
features can be derived. First, the local mean point density (D)
is computed for each point, independently from the lidar strip
they belong to. Several neighborhoods at different sizes can be
computed, enhancing more or less land areas but also water areas
at the nadir of the aircraft. However, this feature is preferable for
single lidar strip analysis. The neighborhood increase allows to
deal with overlap sensitivity (overlapped lidar strips locally in-
creases point density). A 5×5 m offers a suitable trade-off. Nev-
ertheless, this leads to the loss of small structures. To deal with
such issue, the majority density (Dm) is computed: only lidar
points from the strip with the highest number of lidar hits are
taken into account. In order to avoid the sensitivity to the strip
overlap, we define:

Dm = max
strip1, strip2

{Dstrip1, D strip2} = Dmax. (1)

Additionally, the density ratio (Dr) is introduced to favor areas
acquired with several strips but not equally sampled, which is not
the case of water surfaces. Dr is computed as follows:

Dr =
Dmax −Dmin

Dmax
∈ [0, 1], (2)

where Dmax and Dmin are the point densities corresponding, for
each cell of the grid, to the strips with the highest and lowest
number of points, respectively. Such a value is close to 0 on
water areas. Although noisy values can be found at water strip
borders, it is particularly suited for our problem.
Finally, the 3D distribution of lidar points can also be evaluated
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through the computation of eigenvalue features (Demantké et
al., 2011). A covariance matrix of the 3D coordinates is com-
puted in a cylindrical vertical neighborhood of fixed radius (Sec-
tion 2.2). Such a matrix provides three eigenvalues λ1, λ2, and
λ3 (in descending order). These attributes allow to discriminate
water surfaces, which are both horizontal and planar, from land,
even for pixels lying on the ground. Two eigenvalue-based fea-
tures were computed. The first one was the smallest eigenvalue,
λ3 (called volume afterwards). Indeed, λ3 ' 0 for planar ele-
ments, λ3 > 0 for ground pixels (due to ground microreliefs and
surface roughness) and λ3 >> 0 for real 3D Earth surfaces. The
second feature is the scatter, defined as S = λ3/λ1 ∈ [0, 1].
After all, in case of lidar data with multiple strips, the feature set
is: {HG, Dm, Dr , λ3, S }. For single strips, we use instead:
{HG, D, λ3, S }.

2.3 Learning step

Many authors have shown that the size and composition of the
training samples have a substantial impact on the classification
accuracy (Foody and Mathur, 2004). For non-parametric classi-
fiers such as SVM, only samples lying on the edges of a given
class distribution in data space contribute to the analysis. Here,
the subset generation is carried out automatically using the scat-
ter and the volume features.
Extreme values are representative of land and water classes, re-
spectively. High scatter values correspond to areas with signifi-
cant vertical scattering such as vegetation and buildings. Lowest
volume values indicate flattest areas i.e., water surfaces close to
the flightline nadir. Thus, we retrieve pure pixels (hereafter called
seeds) by thresholding volume and scatter cumulative distribution
functions (computed with 500,000 pixels randomly taken). Gra-
dient is computed on both curves. For the volume (scatter) curve,
areas inferior (superior) to the highest gradient value are labelled
as water and land seeds, respectively. However, seed distribution
is not satisfactory. For water areas, few nadir points are selected
whereas they are the most similar to land surfaces, while for land
regions, significant spatial heterogeneity exist and heterogeneous
training pixels cannot be selected with such method.
Since they are not representative of both classes, they are only
used as a basis for designing a more adapted training set. This
step is based on the historical coastline (HCL) or a rough land-
water interface provided by an end-user. Discrepancies may exist
between the dataset and such manually designed border, meaning
that it cannot be used directly for enrichment. Consequently, we
generate a buffer zone centered on the HCL, to prevent the aggre-
gation of unreliable pixels that would deteriorate the final classi-
fication accuracy. A percentage of seed points within such buffer
zone is used. Starting with pixels belonging to the HCL, the di-
latation of such region is stopped when 40% of the seed points
in both classes are included in the buffer (the [35-50%] interval
leads to similar results). Then, connected regions are retrieved
with a standard binary region growing procedure, and these re-
gions are labelled as water or land according to the majority of
seed points existing in such regions. At last, 1% of the pixels of
these regions are randomly selected as training pixels.

2.4 Land-Water classification and regularization

For Support Vector Machines classification, the standard Gaus-
sian kernel is selected and the SVM hyperparameters are opti-
mized with a simple grid search. Despite their ability to handle
high-dimensional feature spaces, SVM are limited to local clas-
sification of pixels, which results in noisy outputs. Several solu-
tions are possible to overcome such limitation (Schindler, 2012).
The simplest solution, which is adopted in this paper, is the fil-
tering approach. For each pixel, a new label is computed with

respect to the weighted incoming labels of a given neighborhood.
Such a solution offers the advantage of linear growth of the com-
putational cost with the number of pixels. For that purpose, we
have adopted the relaxation probabilistic framework (Gong and
Howarth, 1989). We take into account both neighborhood infor-
mation and the probabilities of belonging to each class, as pro-
vided by libSVM (Wu et al., 2004).
This is an iterative algorithm in which the probability values for
each pixel are updated to make them closer to the probabilities
of their neighbours. Thus, we compute the membership energy
for both classes and assign the label corresponding to the low-
est value. Such energy E for label l and pixel i is computed as
follows:

El(i) =
∑
j∈V (i)

Gσ(‖i− j‖) · El(j) · Mi,j [l, lj ]. (3)

Gσ(‖i − j‖) is the weight of pixel j, where Gσ corresponds to
the zero-mean Gaussian density function with variance σ2 (σ =
1 in our experiments) and V (i) is the vicinity window (here a
5×5 window). Finally, M is called compatibility matrix since it
measures the compatibility between pixel i with label l and pixel
j with label lj . We have:

M =

(
0.8 0.2
0.2 0.8

)
(4)

M defines a priori correlations between the probabilities of neigh-
boring points and corresponds to conditional probabilities verify-
ing: 0 ≤ Mi,j [l, lj ] ≤ 1, and

∑
lMi,j [l, lj ] = 1. The coef-

ficients have been empirically selected so as to enforce spatial
homogeneity. However, in order to preserve water/land bound-
aries, the coefficients out of the matrix diagonal are not equal to
0.

3 DATASETS

Numerous datasets (Table 1) were processed in order to study the
behaviour of the method for a large variety of landscapes.

• Perpignan area corresponds to 50km of the French Southern
Mediterranean coast. Seven relevant areas (estuary, harbour,
marshes, etc.) are extracted from this area.

• Martinique corresponds to the Northern part of the island
located in the Lesser Antilles in the Caribbean Sea. It was
selected for the sharpness of the seashore and the high den-
sity of the vegetation.

• Brittany is located in the North-West of France. It has been
selected for our study because the survey was carried out
during a high-tide period. Consequently, different water sur-
faces may exist at the same location depending on the hour
of acquisition.

• Rhone corresponds to a part of the Rhone river, representa-
tive of a river area. Conversely to seashore areas, the point
density is nearly constant on the water surface.

• A length of 6 km of the Moselle river in the North-East of
France is selected. In this region, the river is meandering
due to the flat topography. The area is very challenging since
many small islands and sandbanks are scattered in the river
bed, many lakes and reservoirs closely located to the river
exist.
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• Miami covers a district of the city of Miami (Florida, USA),
representative of a dense city center, with complex struc-
tures (bridges, cranes, buildings) located close to water ar-
eas.

• Louisiana corresponds to an area in a bayou of Louisiana,
USA (Passe A Loutre State Wildlife National Park, East part
of the Timbalier Bay). It is a complex natural wetland, com-
posed of many water meandering channels. Shallow slopes
and little topographic relief exist.

Coordinates Area # lidar points Density
(Lat./Long. in o) (km2) (pts/m2)

Perpignan 42.62/3.04 365 831,814,063 2.3
Martinique 14.65/-60.89 1 478,285 4.3

Brittany 48.64/-2.48 1 3,612,322 3.7
Rhone 43.73/4.59 1 6,959,023 1.7

Moselle 48.32/6.37 2.75 65,187,118 6.3
Miami 25.77/-80.19 1.1 2,290,111 0.3

Louisiana 29.15/-90.24 11 10,275,285 0.7

Table 1: Description of the areas of interest. Miami and Louisiana
datasets have been provided by the NSF through the OpenTopog-
raphy portal (NSF, 2012) and acquired with Leica ALS50 and
ALS40 respectively. Other datasets have been acquired by the
French Mapping Agency using an Optech 3100EA device.

4 RESULTS

For the Rhone, Moselle, Miami and Louisiana areas, since no his-
torical coastline is available, the coarse knowledge of the land-
water interface is substituted by a rough 2D manual plotting.
Table 2 and Figure 1 show that very good results are achieved
for land-water classification for all areas of interest. Since we
deal with balanced classes, the standard Overall Accuracy (OA)
is used as classification accuracy measure. The ground truth has
been manually obtained.
The OA ranges from 95 to 99.5% for 10 out of 13 areas of in-
terest. This proves both the SVM generalization ability and the
efficiency of the designed learning procedure. In particular, even
when the training step focuses on seashore areas or main river
beds, the SVM is able to generalize to inland waters, harbours,
other rivers and channels. Even with small training sets, the wide
range of behaviours of both land and water areas is captured. Var-
ious anthropic and natural land cover classes are all correctly la-
belled, similarly to water surfaces with varying lidar point distri-
butions. The method can deal with land regions with complex to-
pography but also with terrains with high frequencies correspond-
ing to cities. Indeed, land pixels are perfectly classified despite
varying slopes, land covers and uses and city densities. Secondly,
results show the robustness of the spatial features for quantifying
the 2D and 3D distribution variability, namely fluctuations (due
to the changing strip overlap, with only parallel and/or orthog-
onal configurations etc.) and low point densities. This simply
shows the relevance of the proposed features. We can note that
conversely to most of water classification existing methods, our
approach is not limited to natural areas where no anthropic items
exist.

The relevance of the filtering strategy using probabilistic re-
laxation is also assessed. Salt-and-pepper noise is removed and
sharp boundaries preserved. Pixels misclassified by the SVM and
located in the middle of both regions are corrected, as well as
part of those lying on class edges. Contrary to a simple Gaus-
sian weight that would have blurred such edges, the addition of
the high confidence of the SVM classifier allows to preserve such
borders. The Overall Accuracy is only slightly improved (mean
value: +0.05%→0.8%), revealing that the class with the local
highest confidence is dilated. Since for the 1 m resolution grid

Perpignan area (# pixels) OA (%) Area (# pixels) OA (%)
Complex land area 99.85 Martinique 97.91(1,002,001) (1,004,004)

Cliffs 98.84 Brittany 95.40(1,002,001) (1,006,009)
Harbour 99.20 Rhone 98.85(1,002,001) (2,005,985)
Estuary 98.09 Moselle 89.47(1,000,001) (10,338,307)

Breakwater 99.44 Miami 97.15(1,002,001) (2,001,187)
Rocky sharped coast 99.00 Louisiana 88.41(1,002,001) (14,385,225)

Marshes 85.40(1,004,004)

Table 2: Overall Accuracy (OA) for areas introduced in Section 3.
Accuracy has been assessed of the whole areas. The left col-
umn corresponds to regions selected within the Perpignan dataset
whereas the right column corresponds to various areas dissemi-
nated all around the world.

a 5×5 neighborhood and a spatial Gaussian weight of σ=1 were
adopted, the local erosion of either land or water classes is infe-
rior to 1 m. This may remove very thin objects but does not affect
objects of interest such as rivers, breakwaters and bridges (see
Figure 1).
Due to the higher homogeneity of behaviours of the water points,
water areas are better discriminated than land points for both re-
gions. Misclassification appears only very locally, meaning that
this would not corrupt the subsequent DTM computation.
Finally, the processing time of the method has been evaluated for
10 distinct areas within the seven datasets. The average comput-
ing time for the full workflow is around 30 minutes for 1km2 and
approximately 4 million points (processor: 2.83GHz with 3.9GB
RAM). Half of the time is spent for 3D feature computation and
probabilistic relaxation.

5 DISCUSSIONS

A closer look to the classification of the thirteen datasets (Fig-
ure 1) allows a more in-depth analysis of the proposed method.
Dense city centers, harbours, estuaries, cliffs, complex rocky shore-
lines, sandy beaches are correctly classified. Figure 1 shows the
approach versatility in spite of both the significant heterogeneity
of the land object 3D signatures and the very different sizes of
land objects to be discriminated within each area.
Moreover, the classifier is not perturbed by strong variations of
the surface reliefs and is able to deal with various vegetation
canopy covers or building densities (Miami). Such ability is il-
lustrated for Complex land area and Cliffs datasets, where very
high OA are reached (99.85 and 98.84%, respectively), despite
steep slopes. The high vertical scattering of the lidar measure-
ment is well modeled with the scatter feature and is used in con-
junction with 2D density-based attributes, as proposed, to dis-
criminate forested areas with dense canopy covers (Martinique)
from water areas (OA=97.9%).
Furthermore, small features are correctly preserved: rocks (Cliffs
and Rocky sharped coast), bridges (Harbour), canal locks (Moselle)
or ships of 5-10 m length (Harbour, Rhone, or Brittany), and
small water surfaces on land regions (Brittany). In Miami dataset,
bridge pillars are correctly labelled as land even if the point cloud
is locally very sparse (mean density around 0.3 pt/m2 for an over-
all accuracy of 97.15%, see Figure 2). In particular for DTM gen-
eration and subsequent flood modeling, rocks, breakwaters and
bridges must be well classified (>99% in all cases). Despite low
point densities (i.e. below 4 pts/m2), these items are correctly
retrieved enhancing the relevance of the proposed classification
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Figure 1: Results for the various areas of interest. Both orthoimages and classifications ar provided (n Land – n Water – n No data).
The ten areas on the left correspond to 1 km×1 km tiles. The orange line shows the historical coastline.

features. Moreover, surveys with relatively low spatial resolu-
tion are sufficient for water monitoring since oceans, rivers, and
shallow channels are correctly classified. This is enhanced in Fig-
ure 1 (Estuary, Rhone, Moselle, Louisiana), where hydrographic
networks are accurately delineated. In particular, in Moselle, one
can show that the canal, small lakes and river branches are de-
tected as water areas despite very few lidar points. Therefore, our
method proposes a strong alternative for coastal object detection
(tidal channels, trenches, gullies), assuming they are filled with
water. This is no longer necessary to develop on-purpose track-
ing methods.
Additionally, smooth transitions between both classes are well
detected. This is the case for sandy beaches (Breakwater), river
banks (Rhone, see Figure 2), and even for more complex land-
scapes such as Louisiana. Overall accuracies (OA) may be slightly
inferior for such regions (95-96%), which comes from misclassi-
fication of a strip of 1-2 pixel width located on each side of the
land/sea interface. This explains the difference in accuracy be-
tween regions with almost similar landscapes. For instance, Har-
bour and Estuary areas exhibit close topographic behaviors but
sharp anthropic elements within the Harbour dataset allows to
better delineate the land-water interface (OA=99.2% > 98% for
the Estuary dataset, see Figure 2).
A visual assessment confirms that errors mainly correspond to
punctual misclassification. Wrongly assigned isolated pixels are
present in both classes and are located when similar behaviours
exist. In water areas, this corresponds to 3D points close to the
strip centers, for which higher and regular point densities are re-
ported. This is due to the specular properties of water surfaces.
Conversely, for land regions, pixels are labelled as water for flat
and very irregular sampled surfaces. This is the case for asphalt
roads, as noticed in (Höfle et al., 2009).
Two main problems can be noticed, corresponding to the areas
with lowest quality measures (Brittany, Moselle, and Louisiana),
where 85%<OA<95%. On the one hand, classification can lo-

cally fail in wetlands areas (marshes and mangroves). In the case
of shallow waters, the laser pulse backscattering varies both with
incidence angle and water depth. In addition, the presence of
many small linear anthropic structures leads to difficult 2D and
3D point distribution modeling (Marshes). Consequently, the
confusion between classes is higher (OA=85%). A similar be-
haviour is noticed for the Moselle dataset. While the canal is cor-
rectly classified, the river exhibits a larger number of erroneous
labels (Water accuracy: 80.2%) due to very shallow depths and
sandbanks coupled with narrow river branches. The accuracy of
the results also depends on the tide strength, on the depth of the
catchment basins, and on the sediment level. For instance, the
Brittany dataset illustrates problems occurring when an area is
acquired by several lidar strips with high tidal conditions. Sev-
eral parallel sea surfaces exist in the point cloud at the same 2D
location, and the classifier labels such areas as land (top left of the
area in Figure 2). Moreover, for low point densities, the strong
overlap between laser strips may result in densities similar in land
and water areas. For nearly featureless areas, if the terrain is flat
or shallowly slopped (e.g., Louisiana dataset), misclassification
occurs in water surfaces, where the lidar point density is dou-
bled (Figure 1). Nevertheless, since the land-water classification
is mainly performed for shoreline derivation, such errors do not
result in a decrease in accuracy of the land-water interface.
Furthermore, the choice of a 2D-based classification can lead to
other kinds of misclassification. First, for pixels mixing water
and land points, both labels are conceivable. The selection of a
1 m cell size offers a good trade-off between computing time and
accuracy but does not prevent erroneous labelling. It can be no-
ticed for cliffs where high vertical shifts exist, resulting in a small
dilatation of the land surfaces (Figure 2, Cliffs). This is also the
case for harbour areas where small objects such as jetties and
boats are partly classified as water. This is illustrated in Figure 2.
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Figure 2: Classification results displayed in 3D for various areas
of interest (see text for more details).

6 CONCLUSIONS

This paper proposes a workflow for land-water discrimination,
which is efficient in terms of both classification accuracy and
computing time. It applies to various landscapes: it is suitable
for small or large area mapping and it is able to deal with single
strips or complex survey configurations. The adoption of a state-
of-the-art supervised classifier, the Support Vector Machines, has
allowed to benefit from two strong features: a fast classifier with
high generalization capability, and a method that has only to be
fed with a list of attributes. Furthermore, we only need a coarse
delineation of water and land regions or an existing coastline or
river delimitation. Such inputs do not need to be geometrically
accurate, and the effectiveness of our approach shows the poten-
tial for both coastline database refinement and updating.
The different landscape classifications prove the method reliabil-
ity for both inland water surfaces, rivers and seashore areas. Ob-
jects of high relevance such as bridges are conserved, even with
low point densities, allowing subsequent surface modeling valu-
able for many applications such as flood simulation purposes.
The method was established for areas with sufficient water sur-
face but turns out to be efficient for linear features such as rivers
and channels. A specific filtering step coupled with top-down
knowledge (e.g., river banks are most of the time parallel to each
other) would definitively improve the results for the latter areas.
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