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ABSTRACT: 
 
In this paper, we propose a hierarchical semantic graph model to detect and recognize man-made objects in high resolution remote 
sensing images automatically. Following the idea of part-based methods, our model builds a hierarchical possibility framework to 
explore both the appearance information and semantic relationships between objects and background. This multi-levels structure is 
promising to enable a more comprehensive understanding of natural scenes. After training local classifiers to calculate parts 
properties, we use belief propagation to transmit messages quantitatively, which could enhance the utilization of spatial constrains 
existed in images. Besides, discriminative learning and generative learning are combined interleavely in the inference procedure, to 
improve the training error and recognition efficiency. The experimental results demonstrate that this method is able to detect man-
made objects in complicated surroundings with satisfactory precision and robustness. 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

With the development of remote sensing technology, a large 
number of high-resolution remote sensing images are available, 
which can provide us geo-spatial information in detail. The task 
of interpreting various types of man-made objects has become a 
key problem in remote sensing image analysis. 
Many approaches have been proposed for object detection and 
recognition, using textural features, wavelet filters, and so on. 
Since most of man-made objects are complex structures and 
surrounded by disturbing background, the mentioned low-level 
methods can not detect objects as accurately as expected. 
Besides holistic approaches some parts-based models have been 
introduced, following the theory that man-made objects can be 
taken as a composition of features or sub-objects according to 
certain spatial rules.  
Initially, those works used simple primitives to describe parts, 
like structured lines or curves, and defined the relationships by 
numbers or ratio between adjacent ones. Obviously, those 
descriptors are too simple to explore useful information in 
images. Later, Webber et. al (2000) represent objects as 
constellations of rigid parts, and recognized objects with a join 
probability density function on the shape of rigid parts by 
similarity matching. Fergus et. al (2003) and Opelt et. al (2004) 
proposed category models composed of some more flexible 
parts, and estimated the parameters of the parts using 
expectation-maximization algorithm. Leibe et. al (2004) 
introduced an implicit shape model which organizes different 
contour fragments to extract objects from cluttered scenes. 
Vijayanarasimhan & Grauman (2008) also presented an 
unsupervised learning method to analyze objects by calculating 
relationship between their parts. However, the parts in those 
methods are mostly pre-defined, which means it is difficult for 

them to reflect the variances between different appearances and 
sizes accurately. 
Kannan et. al (2007) thus proposed a ‘jigsaw’ model, and the 
shapes, size of parts are learned from the repeated structures in 
a set of training images. By learning such irregularly shaped 
pieces, both the shape and the scale of parts can be discovered 
without supervision. Also, Ni et. al (2009) made some 
improvements, by constructing a generative model to capture 
the appearance and geometric structure of the whole scenes. 
Their models suffer from errors in scenes containing complicate 
contents because they only rely on single level processing. 
Furthermore, their descriptions do not make full use of spatial 
relations existed in images, particularly the ones with various 
background clutters. 
In this paper, we propose a specific hierarchical semantic graph 
model. Unlike traditional parts-based approaches, this model 
can yield more comprehensive understanding of images. It can 
not only build the semantic constrains between objects and 
background at high level, but also reinforces the geometrical 
relations between different components at low level. Our model 
also uses belief propagation to enhance the utilization of spatial 
information existed in scenes, by training local classifiers. This 
is done to calculate parts properties and using messages to 
transmit their semantic relationships quantitatively. Besides, 
discriminative learning and generative learning are combined in 
inference procedure interleavely, to improve the training and 
recognition efficiency. The experiments on our dataset 
demonstrate that it can detect and recognize man-made objects 
in high resolution remote sensing images with satisfactory 
precision and robustness. 
In the following, section 2 explains the hierarchical semantic 
model. Section 3 introduces the procedure of messages 
propagation, and section 4 illustrates the flow of hybrid 
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inference. Section 5 and section 6 give the experimental results 
and conclusion. 
 

 
(a) Level 1                (b) Level 2                (c) Level 3 

Figure 1. Multi-segmentation results 
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Figure 2. Hierarchical semantic graph model 

 
2. HIERARCHICAL SEMANTIC GRAPH MODEL 

Though remote sensing images have complex contents, there 
are still some empiric rules for man-made objects, like the 
alignment of buildings, the relative position of trees and roads. 
So the hierarchical semantic graph aims at describing the 
objects categories and their compositions, meanwhile mining 
the relationships between foreground and background.  
In the preprocessing step, we apply multi-segmentation for 
every training image 

1
,

n
I I…  to get segment networks. Here we 

use the Pyramid-cuts algorithm (Sun et. al 2011) as following:  
 

max( , )
i L i

W H
K σ

α −
=
⎡ ⎤⎢ ⎥ ⋅ , 1, 2, ,i L= "    (1) 

 
where      K, L = number of segments and layers 

W, H = height and width of image 
⎡ ⎤ = ceiling function 
σ = segmentation factor, here 100σ =  
α = scale factor 

 
Figure 1 shows the segmentation results at three levels. We 
define a hierarchical semantic graph G as W W�G , H H�G , 

where WG  and HG are the width and height of the semantic 
graph. The graph model has a multi-level structure. Each node 
B in graph G  represents an object or a part. It has an 
appearance property ( )Bμ , which is used to evaluate the 
feature attribution of node, and a location property ( )Bλ , which 
is used to represent the spatial distribution of node.  
As Figure 2 illustrates, each training image I corresponds to one 
hierarchical mapping graph M with the same size and structure. 
This mapping graph is used to determine the nodes and their 
locations to generate that training image.  

The node B in M is associated with an offset vector 
( , , )i ix iy izl l l=l  to describe its spatial information, where ixl  and 

iyl are the offset value of node coordinate, izl is the offset value 
of node layer. Then, we can build a mapping function between 
segments in training image and nodes in semantic graph as: 
 

( ) modi i i= −l t r G                               (2) 
 
where      it  = original vector of segments in I 

ir = semantic vector of nodes inG  

G  = dimension of graph G  
 

The offset vector can be calculated as following: 
 

ix ix ix

iy iy iy

iz iz iz

l t r

l t r

l t r

= −

= −

= −

⎧
⎪
⎨
⎪
⎩

                         (3) 

 
where       ixt , iyt , izt  = center coordinates and layer of it  

ixr , ixr , iyr  = center coordinates and layer of ir  
 
It is easy to deduce that if two adjacent segments have the same 
offset values in an image, they should also be adjacent in 
mapping graph. We design following criterion to evaluate this 
consistent relationship: 
 

( )( , ),

1
( ) exp( ( , ))

T H
i j

i j N N

p
Z

ψ
∈

= − ∑ l lM                (4) 

 

where       TN = group of neighbor nodes in the same layer 
HN = group of neighbor nodes in the adjacent layer 

Z  = normalized factor 
ψ = correlation function, here we use Potts model to 

simulate the spatial relation between il  and jl  
 
Assuming that all nodes are independent from each other, we 
use Gaussian distribution to model the spatial distribution of all 
nodes, and add uniform distribution to improve the robustness. 
The likelihood function of our model can be given as: 
 

( )( , ) [ ( ), ( )

(1 ) ( )]
i i i i l

i

i

p I I

I

π μ λ

π

= − −

+ −

∏ t r t rG M

U

N
     (5) 

 
where      ( )⋅N = Gaussian distribution 

( )⋅U  = Uniform distribution 
π = fixed parameter, here 0.9π =  

 
When learning the model, it is possible for nodes of the graph 
G to be unused, so we follow the idea of Griffin & Brown 

(2010) by defining a Normal-Gamma prior ( )⋅R on nodes B:  
 

( )( )0( ) ( ) , ( ) ( )p μ μ λ λ= ⋅∏
c

B B BG N R           (6) 
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(a) Segments               (b) Centres         (c) Grids projection 

Figure 3. Sparse way to measure locations 
 
where      0μ  = control parameter, here 0 0.5μ =  
 
Thus, the joint possibility framework for hierarchical semantic 
graphG , training images 1 , , NI I…  and correspondent mapping 

graph 1 , , N…M M can be drawn as: 
 

( ) ( ) ( ) ( )
1

, , ,
N

n n n n n
n

p I p p I p
=

= ∏G M G G M M         (7) 

 
We need to infer the Eq. (7) and learn the hierarchical semantic 
graph for man-made object categories. 
 

3. SEMANTIC INFORMATION PROPAGATION 

In addition to the close-distance relationships, we also take 
long-distance relationships into consideration, such as the 
interactions between disjoint nodes, to improve the accuracy. 
 
3.1 Feature calculation 

We use three types of feature descriptors to calculate node 
appearance properties. They are Harris-Affine descriptor, SIFT 
descriptor, and texton. The first two ones are kind of scale and 
rotation invariant descriptors. We follow the methods proposed 
by Mikolajczyk & Schmid (2002) and Martin et. al (2009) to 
extract descriptors in every segment. Then, we calculate the 
average value and represent them by two 128 dimension vectors. 
For texton, we assume it can distinguish foreground from 
background with even low contrast. Thus, we design LM filter 
banks with different scales (0.6 to 2.0, step is 0.2) and rotations 
(step is 45 degree). The response of filter banks is a 64 
dimension vector. Totally, the appearance property ( )Bμ is a 
320 dimension vector.  
Since there are lot of nodes and most of them have irregular 
shapes, we design a simple sparse way to measure their location 
properties. We take the centre of segments’ enclosing rectangle 
as their location, and divide each training image into M grids:  
 

W H
M

ρ ρ
=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

i                        (8) 

 
where       ρ  = grid factor 
 
As Figure 3 shows, the segments are projected into grids, and 
the ones in the same grid are assumed to have the same location. 
Thus, location property ( )Bλ  of all segments can be calculated 
with a three dimension vector. 
 
3.2 Messages propagation 

Based on the calculated feature information, we use belief 
propagation (BP) algorithm to evaluate interactions of close-
distance nodes quantitatively. And those interactions are 

transmitted to long-distance nodes in our model. Following the 
idea of Freeman et. al (2000), we build the belief network based 
on the pair-wise Markov random field. As Figure 4 illustrates, 
instead of single level in standard BP, our belief network is a 
multi-level structure. We define 1{ , , }nl l… as the implicit 

attribution of nodes 1{ , , }nB B… . The message ( )ij jm l  from 

node iB  to node jB  represents the state possibility of node 

iB dependent on the state of node jB . The message can be 
calculated as: 
 

( ) ( )
( ) ( , )

( )
i

i

i i ji i
j N

ij j ij i j

ji i

m
m

m

φ

ψ ∈
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∏
∑

l

l l
l l l

l
           (9) 

 
where       ( )ijψ ⋅  = pair-wise function 

( )iφ ⋅  = binary function 

iN  = neighbour nodes number of node iB  
 
The transmitting process is top down, since the nodes in greater 
scale may contain more global information. The messages are 
updated as:  
 

\{ }

' \{ }

( ) ( ) ( , ) ( )

( ' ) ( ' , ) ( ' )

Ti i

Hi i

ij j i i ij i j iT ki
k N j

i i ij i j ti iH
t N j

m w m
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φ ψ

φ ψ

∈

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

+

∑ ∏

∑ ∏

l

l

l l l l l

l l l l

         (10) 

 

where        
T

w  = weight for messages transmitted in TN  

H
w = weight for messages transmitted in HN  

Here we have 1
T H

w w+ =  
 
Thus, we can easily define the max-product variant of BP. 
Instead of summing over all possible states of 

i
l , we just pick 

the maximum values of the distribution as: 
 

\{ }

\{ }

( ) max ( ) ( , ) ( )

( ' ) ( ' , ) ( ' )
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∏

l
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           (11) 

 
4. HYBRID INFERENCE 

Now we need to infer the model. BP is often preferred to graph 
cuts algorithms since it gives a distribution over the states, 
rather than a MAP estimate. However, BP does not scale well 
when the state space is large, and the optimization can become 
a challenging problem. As the likelihood function of our model 
is a mixture of a Gaussian and a Uniform, the message has the 
same value in many of its entries. Hence, the message can be 
accurately represented by a sparse vector. Inspired by Pal 
et. al’s work (2009), we took likelihood function as a sparse 
message distribution to make the model be economical to 
describe.  
Meanwhile, we put the inference algorithms into a wake-sleep 
framework (Hinton et. al 1995). By this approach, generative 
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belief propagation and discriminative boosting classifiers could 
enhance the performance of each other interleavely. Moreover, 
it cannot only allow the input to be reconstructed accurately, 
but also overcome the bottleneck of iterative optimization.  
 

   

( )12 2m B

( )21 1m B

( )23 3m B

( )32 2m B

( )34 4m B

( )43 3m B

( )35 5m B

( )53 3m B

 
(a) Belief network               (b) Belief message transmission 

Figure 4. Messages propagation in belief network 
 
4.1 Discriminative learning 

We perform discriminative learning to predict the accurate 
position of each node in semantic graph bottom up, according to 
the properties of itself and its neighbour nodes.  
Assuming the input samples are 1 1( , ), ..., ( , )N Nc y c y , where 

ic is the location vector of node iB , iy  is the ground truth for 
position labels. We use the Joint boosting algorithm (Torralba 
et. al 2007) to train a strong location classifier �p , which could 
be used to predict the possible position in different M grids. We 

also use the same algorithm to train a property classifier ��p . The 

input samples are ' '
1 1( , ), ..., ( , )N Nc h c h , where '

ic  is the property 

vector of node iB , ih is the ground truth for category labels, 
which represent the possibility belong to different categories. 
 
4.2 Hybrid inference 

We learn hierarchical semantic graph in a wake-sleep 
framework from a set of training images. In wake phase, the 
boosting algorithm trains both location and property classifiers 
on a large amount of segments selected from training images. It 
aims at obtaining the detail information of every node. In sleep 
phase, generative belief propagation algorithm is used to 
calculate the relationships between adjacent nodes. That could 
improve the labeling accuracy.  
The main flow of hybrid inference is shown as following: 
1.  Data preparing  
We label the training images { }1 2, , , MI I I… with ground truth. 
Each training image is segmented, and the features of all nodes 
are calculated following the previous steps.  
2.  Initialization 
We use K-means clustering for nodes in { }1 2, , , MI I I…  
according to their property features. For each level, we 
calculate the similarity difference E between the nodes and their 
ground truth as: 
 

( )
1

' '
K

i
i i i iE

=

= − + −∑ y y h h   (12) 

 

where        '

iy  =  position labels of node iB  after clustering 

                  '

ih  = category labels of node iB  after clustering 
We sort the nodes and choose the best 25 ones with minimum 
values in each level to build the initial semantic graph ( )0G . 
For 1, 2, ,i T= …  
3.  Wake phase 

The initial classifier �
( )i

p  and ��
( )i

p are trained based on the 

segments in ( )1i−G . 

Then, we use �
( )1i

p
−

 and ��
( )1i

p
−

 to label all the nodes in training 
images bottom up, and infer the mapping graph 

( ) ( ) ( ){ }1 2, , ,i i i
M…M M M  as Eq. (2). 

4.  Sleep phase 
We use belief propagation to calculate messages as Eq. (11), 
and transmit the messages top down for all mapping images. 
Hence, the generative likelihood function ( ),G Mi ip I  in 
Eq. (5) can be approximated with the mask of discriminative 
prediction as following:  
 

( ) ( ) ( ) ( ), ,G M Gi i i i i
S

ip I p I m δ
∈

∝ == ∑
s

l l sl       (13) 

 
where        ( )δ ⋅ = Kronecker delta functions 

S = the states set of messages ( )m ⋅  whose 
corresponding peaks s are kept 

 
Thus, we use Eq. (4), (6), (13) to infer Eq. (7), and then choose 
the best nodes compared with ground truth according Eq. (12) 
to update the semantic graph ( )iG .  
5.  Iteration 
We repeat the wake phase 3 and sleep phase 4 to train our 
model, until reaching the iteration time T.  
At first, the results have a great deviation from ideal values, but 
the errors are minimized through a few iterations until getting 
the best fitting ones. 
 
4.3 Objects detection/recognition 

To label a testing image, we first perform multi-segmentation 
and calculate the feature information using the same parameters 
as training procedure. Then, we infer the label map which is 
kind like a distribution over the class label for each node in G  
in all layers, and assign to each segment the most probable 
category of the corresponding location. Even there may exist 
some redundant segments or overlap areas, we can still extract 
those regions or contours according to the label results. In this 
way, all of the learned man-made objects present in the images 
can be detected and recognized.  
 

5. EXPERIMENTS AND EVALUATION 

To evaluate the performance of our method, we gather in total 
300 high resolution remote sensing images from QuickBird 
with the resolution 0.6 m to build image dataset. These images 
contain three complex scenes, including airport, harbour and 
urban area, and several typical man-made objects, such as ships, 
airplanes, oilcans, and water. We randomly select 25% images 
for training, and the remaining 75% for testing and evaluation. 
For quantitative evaluation, we manually label the testing 
images as ground truth. The performance can be evaluated as: 
Recall = TP/NP, Precision = TP/ (TP+FP), where NP is the total 
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numbers of man-made objects, FP is the false positives, and TP 
is true positive. The recall-precision curve (RPC) and the area 
under the curve (AUC) are also used to give a better measure 
for comparison purpose. 
 
5.1 Parameter analysis 

Multi-segmentation parameters obviously affect the final results.  
We choose different scale factors α and layer numbers L to 
evaluate the detection performance for ship category in 100 
harbour scene images. As Figure 5 illustrates, it can be deduced 
that the optimal choice of scale factor is 3 and layer number is 4. 
It is partly because little node could not get the correct feature 
description for segments, while too many layers and nodes may 
increase the error possibility and computational complexity. 
To describe the location of nodes in network, we use a grid 
factor ρ . Table 1 lists the ship detection precision in 100 
harbour scene images, and the optimal choice is ρ = 35. It 
means that the local information can be measured when the size 
of gird is about 1/1000 of images. 
In discriminative learning procedure, we propose two kinds of 
classifiers: location classifier to predict the nodes positions, and 
property classifier to label the node categories. Figure 6 
demonstrates their effects for hybrid learning in the whole 
dataset. We can find that the precision of transmitting messages 
will be declined if only use one kind of classifier.  
The precision of our model is also related with the iteration 
times. Theoretically, the more the iterations, the higher 
accuracy the model could get. Figure 7 shows the performance 
of our model with different hybrid learning times. The 
recognition accuracy enhances as the increase learning times, 
but it also means the increase requirement for storage and 
training times. We should choose appropriate iteration times 
after the precision reaches the convergence. In our dataset, it 
can be T = 30. 

 
5.2 Detection and recognition 

Figure 8 illustrates the hierarchical semantic graph of ship 
category. It has four levels correspond to different scales. The 
parts in smaller scales capture essentially appearance and shape 
information, while parts in larger scales capture image 
structures and semantic relations. We can use this graph to 
extract man-made objects. Figure 9 shows the labelling results 
for harbour scene images, where the results of extracted ships 
and their location are presented. In Figure 10, additional 
interpretation results are shown for the harbour and airport 
scenes. Planes, ships, oilcans and other man-made objects have 
been detected. Even in some complicated cases due to rotation, 
occlusion, and noise, our approach achieves reasonably good 
results. 
Furthermore, we can also use this model to interpret the urban 
scenes, by labelling the building, road and tree categories, as 
Figure 11 shows. Table 2 are listed the average precisions of 
recognition and segmentation. We observe that our method can 
achieve good performances. 

 
6. CONCLUSIONS 

In this paper, we propose a hierarchical semantic graph model 
for man-made objects detection and recognition in high 
resolution remote sensing images. Our solution uses both the 
explicit and implicit information in images, by calculating the 
semantic relations between parts, objects and background 
quantitatively. In model inference, we perform discriminative 
learning and generative learning interleavely to improve the 

training error and recognition efficiency. The final experimental 
results show that this useful method would provide valuable 
information to image interpretation and other applications.  
 

 
Figure 5. Detection performance (RPC and AUC) with different 

segmentation parameters 
 

Grid factor 10 20 30 35 40 50 
Precision (%) 73.3 80.2 81.7 86.2 79.3 75.8

 
Table 1. Detection precision with different grid factors 

 

 
Figure 6. Effects of location and property classifiers for 

learning 
 

 
Figure 7. Detection precision with different iteration times 

 
Precision (%) Airplanes Ships  Oilcans 

Detection 83.0 86.2 80.5 
Recognition 85.5 86.5 84.0 

Segmentation 85.9 89.3 90.7 
 

Table 2. Average precision of detection, recognition and 
segmentation error on image dataset using optimal parameters 
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Figure 8. Hierarchical semantic graph for ship category 

 

 
(a) Testing images     (b) Labelling      (c) Extraction results 

Figure 9. Ships labelling and extraction results 
 

     
(a) Airplanes                              (b) Ships 

     
(c) Ships and oilcans             (d) Ships and oilcans 

Figure 10. Interpretation results in harbour and airport scenes 
 

 
(a) Testing images       (b) Labelling         (c) mapping results 

Figure 11. Interpretation results in urban scenes 
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