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ABSTRACT: 

 

With rapid developments in satellite and sensor technologies, there has been a dramatic increase in the availability of high resolution 

(HR) remotely sensed images. Hence, the ability to collect images remotely is expected to far exceed our capacity to analyse these 

images manually. Consequently, techniques that can handle large volumes of data are urgently needed. In many of today‟s multi-

scale techniques the underlying representation of objects is still pixel-based, i.e. object entities are still described/accessed via pixel-

based descriptors, thereby creating a bottleneck when processing large volumes of data. Also, these techniques do not yet leverage 

the topological and contextual information present in the image.  We propose a framework for Discrete Topology based hierarchical 

segmentation, addressing both the algorithms and data structures that will be required. The framework consists of three components: 

1) Conversion to dart-based representation, 2) Size-Constrained-Region Merging to generate multiple segmentations, and 3) Update 

of two sparse arrays SIGMA and LAMBDA which together encode the topology of each region in the hierarchy. The results of our 

representation are demonstrated both on a synthetic and a real high resolution images. Application of this representation to object-

detection is also discussed. 

 

 

1. INTRODUCTION 

Over the past few years, there have been significant 

improvements in our ability to capture high-resolution satellite 

images. For instance, the recent WorldView-2 sensor can 

capture images at < 0.5 m resolution with a collection capacity 

of 300,000 sq mi/day. At this rate, this instrument alone can 

cover the entire USA in 12 days. Further, over this decade, it is 

projected that 288 earth observation satellites from 42 countries 

are to be launched (Euroconsult, 2012). Our ability to collect 

high-resolution data far exceeds our capacity to analyse them 

manually. Consequently, techniques for automated production 

of geospatial information and assisted image analysis are 

urgently needed. 

 

To deal with segmentation of high-resolution remotely sensed 

images - one of the core tasks of image analysis - , a plethora of 

techniques have surfaced in the literature (Dey et al., 2010). The 

most sought after techniques are those that incorporate multi-

resolution models through the use of appropriate scale space 

representations (Dey et al., 2010). This is because in complex 

high-resolution images, an object of interest to an analyst may 

reveal itself at any size/scale of observation; therefore analysis 

at multiple scales is necessary. Although these methods 

contribute significantly in dealing with complex high-resolution 

images (Baatz and Schape, 2000, Chen et al., 2009, and Syed et 

al., 2011), the underlying representation and information 

processing is still primarily pixel-based thereby creating a 

bottleneck when processing large volumes of data. Further, 

these methods do not fully leverage the topological information 

present in the images in order to improve detection results. The 

ability to leverage contextual information requires examining a 

regions (potential object‟s) neighbourhood, and exploring the 

arrangement of adjacent regions (Syed et al., 2012). For 

instance, (Inglada and Michel, 2009) demonstrated successful 

use of spatial reasoning techniques to quantify topological 

relationships between image objects in an object detection 

algorithm using their multi-scale segmentation. However, their 

method of topological information extraction involved pixel-

based processing which significantly limits real-time 

topological queries between any two regions. To mitigate the 

above mentioned problems, a discrete topology based 

framework for topological information extraction was proposed 

in (Syed et al., 2012). However, no framework was provided in 

reference to using this model for multi-level topological queries. 

 

To overcome the above mentioned issues, we propose a 

framework for a discrete topology based multi-scale 

segmentation of high resolution satellite images. This proposed 

representation builds-on and improves our previous research on 

scale-space representation (Syed et al., 2011)  and topological 

information extraction and encoding (Syed et al., 2012). Our 

goal is to provide an effective foundation/framework that will 

facilitate/assist analysts in tasks such as target 

detection/recognition, classification, change detection, and 

multi-sensor information fusion.  

 

The remainder of this paper is organized as follows. Section 2, 

provides a description of the methods used in our framework. 

Section 3, presents the results of applying this framework to 

high resolution satellite images. Finally, Section 4 presents the 

conclusion. 
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2.  FRAMEWORK FOR DISCRETE TOPLOGY BASED  

      HIERARCHICAL SEGMENTATION 

The three main components of our framework are: 1) 

Conversion to dart-based representation, 2) Size-Constrained-

Region Merging to generate multiple segmentations, and 3) 

Update of two sparse arrays SIGMA and LAMBDA which 

together encode the topology of each region in the multi-scale 

segmentation. Steps 2 and 3 take place in tandem as each level 

of the hierarchy is created. A block diagram of  the proposed 

method is shown in Figure 1.   

 

SCRM

Update 

SIGMA(i,j) & 

LAMBDA(i,j)

SIGMA(i,j) LAMBDA(i,j)

Size Constraint

Convert

Pixel-based to 

Dart-based

Representation

INPUT IMAGE SCALE-TREE

 
Figure 1: Block diagram of overall framework. 

 

2.1 Conversion from Pixels to Darts 

The first component of the process is designed to generate a 

dart-based representation from the pixel-based region map. This 

step reduces the dimensionality of the data significantly by 

representing regions by their darts (reduced boundary 

representation) thereby completely encoding the topology of the 

map. The resulting dart-based representation is a combinatorial 

map G such that G = (D, σ) where D is the set of darts and σ is 

defined on D such that a cycle of the permutation σ denoted by 

σ∗ encodes the nodes. The permutation σ for the map shown in 

Figure 2(b) is the first column of the array shown in Figure 6(a). 

For a more detailed explanation of how σ encodes the topology 

of the regions please see reference (Syed et al., 2012). 

 
               (a) Pixel-based                      (b) Dart-based 

Figure 2: Conversion from pixel-based representation of regions 

to a dart-based representation. 

 

The simple image in Figure 2(a) is of size 20x10, therefore uses 

200 pixels to describe the five regions contained within. 

Compare this to dart-based representation, shown in Figure 

2(b), which uses only 24 darts that not only describe the five 

regions, but also encode information for topological inferences.  

 

2.2 Merging Mechanism to Generate a Hierarchy 

The second component is the region merging mechanism to 

generate multiple segmentations. In this framework, the Size-

Constrained Region Merging (SCRM) Algorithm (Castilla et 

al., 2008) is used to generate a hierarchy of segmentations by 

controlling the size of the objects that appear at any given level. 

We have adapted the SCRM to generate segmentations at 

multiple scales but the core idea of the algorithm remains the 

same. A summary of the algorithm is provided in Figure 3.  

 

Algorithm 1: Size Constrained Region Merging 

  Input: • Size constraint for the given level max_sz 

            • list of regions at a given level lbi[] 

Output: • list of regions at the next level lbj[] 

               • update of data structures 

 Find most similar neighbour   

1  for each region in lbi[] 

2    • find all its neighbours 

3    • find its most similar neighbour msn(), based on    

     spectral similarity 

 Iterative Region merging step 

4  for each region in lbi[] 

5    if merge_condition based on size is true then 

6       • merge region with its msn() 

7       • Update new region properties and SIGMA(i,j)  

        and LAMBDA(i,j) 

8       • Enforce merging constraints on neighbours     

        of merged regions  

Figure 3: Algorithm for SCRM  

 

The overall algorithm is based on iterative merging of regions, 

uniformly across the image, until all regions below a given size 

(area) are eliminated. The merge_condition in step 5 of the 

algorithm checks to ensure that the region being merged is 

smaller than the size constraint for that level and also ensures 

that this region and its most similar neighbour have not 

previously been merged during the same iteration. Enforcement 

of merging constraints in step 8 of the algorithm allows for 

controlled aggregation so that the resulting regions have the 

highest possible homogeneity given the size constraint. Which 

means that homogeneous regions are formed first, and then 

dissimilar gaps smaller than the size constraint are progressively 

incorporated into the former (Castilla et al., 2008). For more 

details on how the SCRM algorithm is used to generate a multi-

scale segmentation, refer to (Syed et al., 2011). 

 

 
  (a)                            (b)                             (c) 

 
 (d)                              (e)                             (f) 

Figure 4: Application of the SCRM algorithm to a simple image 

shows how segmentations at multiples scales can be generated   

by altering the size constraint.  
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2.3   Data Structures & Procedures to Encode the Hierarchy 

Finally, the third component is the procedure used to update the  

data structures that store the hierarchical scale-tree. As we deal 

with bigger and bigger remotely sensed images (area covered), 

the storage and efficiency becomes more important. Using a 

dart-based representation for each level, not only saves memory, 

but also enables efficient access and retrieval of the desired 

information from the hierarchy. The update of the data 

structures is performed simultaneously as the scale-tree is being 

built from one level to the next (Section 2.2).  

 

The sparse arrays SIGMA and LAMBDA together encode the 

hierarchy of the scale-tree. They are similar in function to their 

one-dimensional counterparts described in (Syed et al., 2012). 

The columns of the SIGMA array are σ-permutations which 

capture the incidence relations between the darts, while the 

columns of the LAMBDA array capture the region labels 

associated with each dart. Every column of these structures 

represents a level in the hierarchy. Only those rows of the new 

column (level) which are different than rows of the previous 

column (level) are stored in the array making for an efficient 

storage of the hierarchy.  

 
                     (a) Level 2                    (b) Level 3 

    
                    (c) Level 4                         (d) Level 5 

Figure 5: Multi-level segmentation of image from Figure 2(a). 

Note that progressively lesser number of darts will be needed to 

describe the regions as the levels go up. 

 

For a given level, the permutation sigma „σ’ and region labels 

„λ’ can be extracted from the structures by using equations (1) 

and (2), where ‘d’ represents the dart label and „i‟ represents the 

level in the hierarchy.  

 

                           σi = SIGMA(d, i)                                  (1) 

                           λi = LAMBDA(d, i)                              (2) 

 

For illustration, consider a hierarchy of regions generated for 

the image shown in Figure 2(a). The hierarchy contains five 

levels with the first level shown in Figure 2(b) and the 

remaining four levels are shown in Figure 5. The corresponding 

SIGMA and LAMBDA arrays which encode these five levels 

are shown in Figure 6. Note that as the number of levels 

increase, the columns of the arrays become sparser. Removal of 

a region at a given level involves removing the darts associated 

with that region and updating the data structures SIGMA and 

LAMBDA. The steps used to update each of these structures 

will be briefly described in the proceeding sections.  

 

Darts Level 1 Level 2 Level 3 Level 4 Level 5

1 -8 0 0 0 -5

-1 2 0 0 0 0

2 -10 -1 0 0 0

-2 3 0 0 0 0

3 -11 0 0 0 -2

-3 4 0 0 0 0

4 -12 0 -3 0 0

-4 5 0 0 0 0

5 6 0 0 -4 0

-5 1 0 0 0 0

6 -4 0 0 0 0

-6 7 0 0 0 0

7 12 0 -6 0 0

-7 8 0 0 0 0

8 9 0 0 0 0

-8 -5 0 0 0 0

9 -7 0 0 8 0

-9 10 11 0 0 0

10 11 0 0 0 0

-10 -1 0 0 0 0

11 -9 0 0 0 0

-11 -2 0 0 0 0

12 -6 0 0 0 0

-12 -3 0 0 0 0

SIGMA(dart , level )

Darts Level 1 Level 2 Level 3 Level 4 Level 5

1 0 0 0 0 0

-1 1 6 6 6 9

2 0 0 0 0 0

-2 2 6 6 6 9

3 0 0 0 0 0

-3 3 3 7 8 9

4 0 0 0 0 0

-4 4 4 7 8 9

5 0 0 0 0 0

-5 5 5 5 8 9

6 5 5 5 0 0

-6 4 4 7 0 0

7 5 5 5 0 0

-7 3 3 7 0 0

8 5 5 5 5 0

-8 1 6 6 6 0

9 1 6 6 6 0

-9 3 3 7 7 0

10 1 0 0 0 0

-10 2 0 0 0 0

11 2 0 0 0 0

-11 3 3 7 8 0

12 3 3 0 0 0

-12 4 4 0 0 0

LAMBDA(dart , level )

 
(a) SIGMA (Σ)                           (b) LAMBDA (Λ) 

Figure 6: Recall that the arrays sigma „σ‟ and lambda „λ‟ encode 

the topology of a single segmentation (Syed et al., 2012). 

SIGMA and LAMBDA are their multi-dimensional equivalents  

 

2.3.1 Update of SIGMA 

 

Recall that the permutation σ is stored as an integer array which 

encodes the dart incidence relationships in the counter-

clockwise direction (Syed et al., 2012), as shown in Figure 7(a).  
 

-5

1

-8i
 (-8)= -5

i
 (-5)=  1

i
 ( 1)= -8

-5

1

j
 (-8)= -5

j
 (-5)=  1

j
 ( 1)= -5

 
(a) σi for a node at leveli           (b) σj for a node at the next levelj 

Figure 7: Encoding and updating of σ from one level to next. 

 

When using the dart-based representation of regions, the region 

merging operation consists of dart removal. Figure 7 illustrates 

the removal of dart -8 and the updated σ relationships. A 

detailed description of removal operation (Brun et al., 2003) is 

beyond the scope of this paper, but the elementary algorithm is 

shown in Figure 8. 

 

Algorithm 2: Updating the permutation σ 

  Input: •  Array σi   

           •  darts to be removed K = {dk}  

Output: •    Array σj   

 Update the incidence relationships in σj  

1  for each dart dk ∈  K 

2    •   set σj (dk) = null 

3    •   set   σj ( σ
-1

i (dk) ) = σi (dk) 

4    •   set   σj (σi (dk)) = σ-1
i (dk) 

Figure 8: Basic algorithm to update permutation σ 
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Consider the merging of regions R6 and R8 from Figure 5(c) to 

get region R9 in Figure 5(d). The update procedure involves 

removing the dart set K ={-8,8,9,-9, 11,-11}. By comparing the 

columns Level4 and Level5 of Figure 6(a), notice the updates 

that were performed using Algorithm 2 i.e.  σ4(1) = -8 (note that 

σ4(1) = 0 in SIGMA(1,4) but it‟s value can be inferred from its 

previous non-zero value in the table)  has been updated to σ5(1) 

= -5 and σ4(3) = -11 has been updated to σ5(3) = -2. 

 

2.3.2 Update of LAMBDA 

As a new region is created at a level, its associated darts are 

labelled appropriately and stored in the array LAMBDA. Let Rl 

be the result of merging regions Ri and Rj , then the algorithm to 

update the dart associated region labels is shown below in 

Figure 9. 

 

Algorithm 3: Updating the λ array for each level 

  Input: •  darts di ∈ Ri and  dj ∈ Rj            

           •  removal dart set dk ∈ K  

Output: •    darts set defining Rl ={dl}   

1  for each dart dk ∈  K 

2    •   set λ (dk) = null 

3  for each dart ds ∈  { ( di dj )   –  dk } 

4   •   set λ (ds) = l 

      i.e. new label assigned to surviving darts    

Figure 9: Basic algorithm to update λ 

 

Once again, consider the merging of regions R6 and R8 in 

Figure 5(c) to get region R9 in Figure 5(d). The update 

procedure involves removing the dart set {-8,8,9,-9,11,-11}. 

Note that the LAMBDA entries in the last column of Figure 

6(b), which correspond to the removal darts, have been set to 

zero. The surviving darts {-1,-5,-4,-3,-2} that define region R9 

have been given their proper label. 

 

3.  RESULTS 

Using the framework described in Section 2, a hierarchical 

scale-space representation of the images is generated. The 

encoding of this hierarchy using LAMBDA and SIGMA allows 

us to efficiently reconstruct the multiple segmentations for 

further processing that may be required. A visualization of the 

results of this representation is shown for both synthesized and 

real images. Note, that for this visualization, each region is 

represented by a node in the tree. The position of the node on 

the x-y plane is the centroid of the region. The position of the 

node on the vertical axis is a function of its position in the 

scale-space. 

 

3.1 Visualization of the Results 

 
Figure 10: Scale-Tree of image shown in Figure 4. 

3.2 Results of Using Hierarchical Representation on High 

Resolution Satellite Images  

 

This image is a small section from Le Faux, France image, 

courtesy Digital Globe©. Figure 11(a) through (f) shows a few 

levels of the multi-scale segmentations that are stored within the 

hierarchy. In Figure 11(f), note how the man-made objects 

(houses and roads) have been separated from the natural parts of 

the image scene (trees and grass), such a delineation is not 

readily apparent in Figure 11(a). As a result, this hierarchical 

representation allows an image analyst to observe and exploit 

information in the image that occurs at multiple scales. Figure 

11(g) is a scale-tree visualization of the image content where 

each region is represented as node in the tree, positioned 

directly above the centroid of the region.  

 

Figure 11: (a)-(f) A few levels contained in the multi-scale 

hierarchy of a high resolution image (g) The scale-tree of the 

image. Scene WorldView-2 sensor courtesy DigitalGlobe© 

 

(a) (b)

(c) (d)

(e) (f)

(g)
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(a)

(b)

(c)

(d)

(e)

Figure 12: (a)-(f) A few levels contained in the multi-scale 

hierarchy of a high resolution image (g) The scale-tree of the 

image. Scene WorldView-2 sensor courtesy DigitalGlobe© 

(Image : Sydney Olympic Complex, Australia) 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

 
Figure 13: (a)-(h) A few levels contained in the multi-scale 

hierarchy of a high resolution image (i) The scale-tree of the 

image. Scene WorldView-2 sensor courtesy DigitalGlobe© 

(Image: Soccercity, Johannesburg, South Africa) 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

 
Figure 14: (a)-(h) A few levels contained in the multi-scale 

hierarchy of a high resolution image (i) The scale-tree of the 

image. Scene WorldView-2 sensor courtesy DigitalGlobe© 

( Image : Al-Masirah Island Oman) 

 

4.  CONCLUSIONS 

A framework for hierarchical segmentation using discrete 

topology was presented. Frist, the pixel-based multi-spectral 

image was converted to a dart-based representation. Then, the 

data structures and algorithms required to create and store the 

hierarchical representation were shown. SCRM algorithm was 

used to generate multiple segmentations of the hierarchy by 

controlling the size constraint parameter.  

 

Application of this representation for four high resolution 

images from the WorldView-2 Sensor, was illustrated in the 

results section. Note that that this representation was generated 

completely in an unsupervised fashion, and yet provides the 

image analyst a useful tool to sort and navigate the multiple 

segmentations of a scene. Since the image has been converted 

into a tree, the next stage of this research involves automatic 

detection of objects of interest, through attributed tree matching 

techniques (Kriege et al., 2012).  
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