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ABSTRACT:

The automatic and accurate alignment of multiple point clouds is a basic requirement for an adequate digitization, reconstruction and
interpretation of large 3D environments. Due to the recent technological advancements, modern devices are available which allow for
simultaneously capturing intensity and range images with high update rates. Hence, such devices can even be used for dynamic scene
analysis and for rapid mapping which is particularly required for environmental applications and disaster management, but unfortu-
nately, they also reveal severe restrictions. Facing challenges with respect to noisy range measurements, a limited non-ambiguous range,
a limited field of view and the occurrence of scene dynamics, the adequate alignment of captured point clouds has to satisfy additional
constraints compared to the classical registration of terrestrial laser scanning (TLS) point clouds for describing static scenes. In this
paper, we propose a new methodology for point cloud registration which considers such constraints while maintaining the fundamental
properties of high accuracy and low computational effort without relying on a good initial alignment or human interaction. Exploiting
2D image features and 2D/2D correspondences, sparse point clouds of physically almost identical 3D points are derived. Subsequently,
these point clouds are aligned with a fast procedure directly taking into account the reliability of the detected correspondences with
respect to geometric and radiometric information. The proposed methodology is evaluated and its performance is demonstrated for data
captured with a moving sensor platform which has been designed for monitoring from low altitudes. Due to the provided reliability and
a fast processing scheme, the proposed methodology offers a high potential for dynamic scene capture and analysis.

1 INTRODUCTION

An adequate description of a 3D scene is typically derived in the
form of point clouds consisting of a large number of measured
3D points and, optionally, different attributes for each point such
as intensity or color. The sampling of observed object surfaces
should be as dense and complete as possible. Due to occlusions
resulting from objects in the scene or areas with low point density,
typically multiple point clouds have to be captured from different
locations in order to obtain complete objects and full scene cov-
erage. However, as the spatial coordinates of each point cloud
are only determined with respect to a local coordinate frame of
the sensor, all captured point cloud data has to be transferred into
a common coordinate frame which is commonly referred to as
point cloud registration or 3D scan matching.

The approaches for point cloud registration can be categorized
by considering the data they exploit. Standard approaches such
as the Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992) or Least Squares 3D Surface Matching (LS3D) (Gruen and
Akca, 2005) only exploit spatial 3D information and minimize ei-
ther the difference between point clouds or the distance between
matched surfaces. The use of point distributions or geometric
primitives such as planes has also been proposed in literature (e.g.
(Magnusson et al., 2007; Brenner et al., 2008)) and belongs to this
category. Considering that the captured scans typically represent
data measured on a regular scan grid, the spatial 3D information
can also be represented as range image. Exploiting visual fea-
tures in this range image significantly alleviates the registration
process. As most of the modern active 3D sensors provide inten-
sity or color information in addition to the spatial 3D informa-
tion, respective intensity or color images may also be available.
The intensity images are typically derived from reflectance in-
formation representing the respective energy of the backscattered

laser light, whereas color information is usually obtained from
co-registered camera images. Such intensity or color images pro-
vide a higher level of distinctiveness and allow for detecting reli-
able correspondences between visual features.

Nowadays, many approaches for point cloud registration exploit
visual features derived from intensity or color images in order
to obtain sparse point clouds. Detected feature correspondences
between the respective images indicate corresponding 3D points.
Hence, the registration of such sparse point clouds may for in-
stance be based on a standard rigid transformation (Eggert et
al., 1997) which is typically combined with the RANSAC algo-
rithm for increased robustness in case of existing outlier corre-
spondences (Seo et al., 2005; Boehm and Becker, 2007; Barnea
and Filin, 2007). As a powerful alternative, the transfer to solving
the Perspective-n-Point (PnP) problem has been proposed (Wein-
mann et al., 2011; Weinmann and Jutzi, 2011).

Recently, an experimental setup for surveillance applications in
indoor and outdoor environments has been presented which is
suited for simulating airborne scene monitoring from low alti-
tudes fairly realistically (Hinz et al., 2011). The first results pre-
sented in (Weinmann and Jutzi, 2012) indicate a high potential for
dynamic scene capture and analysis, but they also reveal that ad-
ditional effort is required to obtain satisfying results. For dynamic
scene capture, highly accurate 3D measurements as provided by a
terrestrial laser scanner cannot be assumed, but the modern scan-
ning devices offer a simultaneous image-based acquisition of in-
tensity and range information with high update rates. Hence, the
registration process has to provide high-quality estimates of the
transformation parameters, low computational effort and robust-
ness with respect to noisy range measurements. Furthermore, the
limited field of view and the limited non-ambiguous range have to
be taken into account. An important and meanwhile commonly
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used first step is the reduction of captured point cloud data to
sparse point clouds by using visual features in 2D imagery. A
reliable feature matching yields 2D/2D correspondences and the
respective 3D/3D correspondences. In contrast to previous work
(Weinmann and Jutzi, 2011; Weinmann and Jutzi, 2012), the pro-
posed methodology involves an improved scheme for outlier re-
jection and estimation of inlier reliability. This scheme exploits
information derived from the reliability of range measurements as
well as the reliability of feature correspondences which is based
on intensity measurements. With the further consideration of
the plausibility of corresponding 3D points, a straightforward ap-
proach for aligning point clouds can be applied which would not
be suitable without a reliable outlier removal. The contribution of
this paper is a new methodology for fast and accurate point cloud
registration which

• exploits sparse point clouds with additional point attributes
in form of quality measures based on geometric and radio-
metric information,

• introduces an improved weighting scheme considering the
derived quality measures, and

• involves a plausibility check taking into account the detected
3D/3D correspondences.

After presenting the methodology for successive pairwise regis-
tration in Section 2, the configuration of the sensor platform is
described in Section 3. Subsequently, in Section 4, an evaluation
is carried out which demonstrates the performance of the new
approach for a realistic test scenario. In Section 5, the derived
results are discussed with respect to basic requirements and other
approaches. Finally, the content of the entire paper is concluded
in Section 6 and suggestions for future work are outlined.

2 METHODOLOGY

The proposed methodology focuses on airborne scene monitor-
ing with a moving sensor platform. After data acquisition (Sec-
tion 2.1), a preprocessing is carried out in order to get normalized
intensity images and the respective 3D point cloud (Section 2.2).
As the captured point clouds are corrupted with noise, a quality
measure is derived for each 3D point (Section 2.3). Subsequently,
distinctive features are extracted from 2D intensity images (Sec-
tion 2.4). A comparison of these features yields reliable 2D/2D
correspondences between different frames as well as a quality
measure taking into account the distinctiveness of matched fea-
tures. Additionally, the projection of the respective 2D points
into 3D space yields 3D/3D correspondences. As the influence
of each 3D/3D correspondence on the registration process should
rely on a respective quality measure, a weighting scheme consid-
ering geometric and radiometric information is introduced (Sec-
tion 2.5). Finally, the point cloud registration is carried out by es-
timating the rigid transformation between two sparse point clouds
with a weighted least squares alignment (Section 2.6).

2.1 Data Acquisition

The proposed concept focuses on the use of range imaging de-
vices which are also referred to as range cameras, i.e. devices
which provide 2D image representations of captured range and
intensity/color. These devices should additionally provide a high
update rate for capturing dynamic scenes or for rapid mapping.

2.2 Preprocessing

The first step consists of adapting the recorded data according to
(Weinmann and Jutzi, 2012), where a histogram normalization is
carried out which maps the captured intensity information to the

interval [0, 255]. For color images, a conversion to gray-valued
images could be applied in order to obtain intensity images. Fur-
thermore, the lens distortion has to be taken into account which
involves an initial camera calibration and the respective correc-
tion of the captured 3D information.

2.3 Point Quality Assessment

As the range measurements might be corrupted with noise, it
is suitable to add a quality measure as attribute for each mea-
sured 3D point. Considering the 2D representation of the mea-
sured range information, the variation of the range values within
small and local image neighborhoods has a strong influence on
the reliability of measured 3D points (Weinmann and Jutzi, 2011;
Weinmann and Jutzi, 2012). Hence, for each point on the regu-
lar 2D grid, the reliability of the respective range information is
described with the standard deviation σ ∈ R of all range values
within a 3 × 3 neighborhood. Low values σ indicate a 3D point
on a smooth surface and are assumed to be reliable, whereas high
values indicate noisy and unreliable range measurements. Result-
ing from this, a confidence map MC is available. In addition to
this, the quality measure could further exploit the active intensity
measurements representing the energy of the backscattered laser
light if these are available, e.g. for range imaging devices such as
PMD[vision] CamCube 2.0 or MESA Imaging SR4000.

2.4 2D Feature Extraction and Projection to 3D

Once the measured information has been assigned additional at-
tributes, the registration process can rely on both range and inten-
sity information, and a confidence map providing the respective
quality measure. For detecting corresponding information, the
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is ap-
plied on the intensity images. This yields distinctive keypoints at
2D image locations xi ∈ R2 as well as the respective local de-
scriptors which are invariant to image scaling and image rotation,
and robust with respect to image noise, changes in illumination
and small changes in viewpoint. These properties of the descrip-
tors allow a reliable feature matching relying on the ratio ρ ∈ R
with

ρ =
d(N1)

d(N2)
(1)

where d(Ni) with i = 1, 2 denotes the Euclidean distance of a
descriptor belonging to a keypoint in one image to the i-th near-
est neighbor in the other image. A low value of ρ indicates a high
similarity to only one of the derived descriptors belonging to the
other image. Thus, the ratio ρ ∈ [0, 1] describes the distinc-
tiveness of the occurring features. Meaningful feature correspon-
dences arise from a greater difference between d(N1) and d(N2)
and hence, the ratio ρ has to satisfy the constraint ρ ≤ tdes, where
tdes is a certain threshold typically chosen within the interval
[0.6, 0.8]. As the SIFT features are localized with subpixel ac-
curacy, the assigned information has to be interpolated from the
information available for the regular and discrete 2D grid, e.g. by
applying a bilinear interpolation. Subsequently, the 2D/2D corre-
spondences xi ↔ x′i between these visual features are used to re-
duce the captured point cloud data to sparse point clouds of phys-
ically almost identical 3D points Xi ↔ X′i with Xi,X

′
i ∈ R3.

Including the assigned attributes, each correspondence can be de-
scribed with two samples of corresponding information accord-
ing to

si = (xi,Xi, σi, ρi) ↔ s′i =
(
x′i,X

′
i, σ
′
i, ρ
′
i

)
(2)

where σi and σ′i indicate the quality of the derived 3D points with
respect to measured range information, and ρ∗i = ρi = ρ′i are the
assigned quality measures with respect to the distinctiveness of
the used intensity information.
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2.5 Weight Calculation

For weighting the influence of each 3D/3D correspondences on
the estimated transformation, a weight parameter has to be de-
rived for each 3D/3D correspondence. Given the calculated val-
ues σi, σ

′
i ∈ [0,∞) and ρ∗i ∈ [0, tdes], which are considered

as quality measures for the respective 3D points Xi and X′i, the
influence of the i-th 3D/3D correspondence Xi ↔ X′i on the
registration process can be weighted by applying a histogram-
based approach (Weinmann and Jutzi, 2012). First, the interval
[0m, 1m] is divided into nb = 100 bins of equal size, and the
values σi and σ′i are mapped to the respective bin. Those val-
ues above the upper boundary of 1m are mapped to the last bin.
The occurrence of mappings to the different bins is stored in his-
tograms h = [hj ]j=1,...,100 and h′ =

[
h′j
]
j=1,...,100

. From
these, the cumulative histograms hc and h′c are subsequently de-
rived, where the entries reach from 0 to the number n of detected
3D/3D correspondences. For assigning those 3D points with a
lower σ a higher weight, as these are more reliable according to
the definition, the inverse cumulative histograms (ICHs)

hc,inv =

[
n−

i∑
j=1

hj

]
i=1,...,100

(3)

and

h′c,inv =

[
n−

i∑
j=1

h′j

]
i=1,...,100

(4)

are established. The quality measure ρ∗i encapsulating the relia-
bility of the matching process is also used for such a weighting
scheme based on nb = 100 bins of equal size covering the inter-
val [0, 1]. Resulting from this, a histogram h∗ =

[
h∗j
]
j=1,...,100

and a cumulative histogram h∗c are available as well as an inverse
cumulative histogram h∗c,inv with

h∗c,inv =

[
n−

i∑
j=1

h∗j

]
i=1,...,100

(5)

from which additional weight parameters are derived. Thus, the
new weighting scheme yields three weight parameters hc,inv(σi),
h′c,inv(σ′i) and h∗c,inv(ρ∗i ) for each 3D/3D correspondence. From
these, the respective weight wi is finally determined with

wi = min
{
hc,inv(σi),h

′
c,inv(σ′i),h

∗
c,inv(ρ∗i )

}
(6)

as the minimum of these values.

2.6 Point Cloud Registration

Introducing a rotation matrix R = [rpq] ∈ R3×3 and a transla-
tion vector t = [tp] ∈ R3, the spatial relation between two points
Xi,X

′
i ∈ R3 representing a 3D/3D correspondence Xi ↔ X′i

can formally be described as

X′i = RXi + t (7)

or more detailed as

X ′i = r11Xi + r12Yi + r13Zi + t1 (8)
Y ′i = r21Xi + r22Yi + r23Zi + t2 (9)
Z′i = r31Xi + r32Yi + r33Zi + t3 (10)

where a perfect mapping is achieved in the ideal case. How-
ever, the 3D/3D correspondences typically do not fit perfectly
and therefore, a fully automatic estimation of the transformation
parameters can be derived by minimizing the error between the

point clouds in the least squares sense. For this purpose, the three
equations resulting from each of the n 3D/3D correspondences
are concatenated. Subsequently introducing vector-matrix nota-
tion and separating the vector u ∈ R12 containing the unknown
parameters according to

u = [r11, r12, r13, r21, r22, r23, r31, r32, r33, t1, t2, t3]
T (11)

yields a linear equation system of the form

l = Au (12)

with l ∈ R3n and A ∈ R3n×12. For solving this linear equation
system, the least squares estimate can be derived as

û =
(
AT PA

)−1

AT Pl (13)

where the matrix P ∈ R3n×3n is used for weighting the im-
portance of the respective observations. As the observations are
assumed to be independent, the weight matrix P is considered
as diagonal matrix. Exploiting the weights wi defined in Section
2.5, which are stored in the vector w ∈ Rn, an initialization of
the weight matrix P according to

P = P0 = diag


(

w∗
i

‖w∗‖

)2

(
di
‖d‖

)2


i=1,...,3n

(14)

is introduced, where w∗ ∈ R3n contains the weights for each co-
ordinate. The parameters di describe the difference between the
respective change of a coordinate value and the mean change of
the coordinate over all correspondences. The introduction of the
parameters di is only possible for very small rotations of the sen-
sor platform, but they ensure a weighting according to the plausi-
bility of the respective 3D/3D correspondences which is derived
from considering the major trend of all correspondences. Ad-
ditionally, those correspondences whose 3D coordinates do not
even fit to the confidence interval within at least two standard de-
viations of the mean coordinates, i.e. a confidence level of 95%,
are removed. By considering the estimated improvement v̂ ac-
cording to v̂ = Aû− l with v̂ ∈ R3n, an iterative update

P = Pk = diag

 1(
v̂i
‖v̂‖

)2


i=1,...,3n

(15)

is applied until the estimated transformation converges to changes
below a certain threshold or until a maximum number of kmax

iterations is reached.

3 ACTIVE MULTI-VIEW RANGE IMAGING SYSTEM

For demonstrating the performance of the proposed methodology,
a sensor platform is used which allows for monitoring from low
altitudes (Hinz et al., 2011). This platform is shown in Figure 1,
and it is equipped with

• two range imaging devices (PMD[vision] CamCube 2.0) for
data acquisition,

• a notebook with a solid state drive for efficient data storage,
and

• a 12V battery with 6.5Ah for independent power supply.
power supply

As the relative orientation of the two range imaging devices can
easily be changed, the system allows for different multi-view op-
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Figure 1: Sensor platform.

tions with respect to parallel, convergent or divergent data ac-
quisition geometries. Due to the large payload of several kilo-
grams, mounting the components for data acquisition and data
storage on an unmanned aerial vehicle (UAV) is still impractica-
ble. Hence, for scene capture, the sensor platform is moved along
a rope. Considering typical surveillance applications, the combi-
nation of the sensor platform with a scaled test scenario allows a
fairly realistic simulation of a future operational system.

A closer consideration of the devices used for data acquisition
reveals the potential as well as the challenges of the proposed
system. A PMD[vision] CamCube 2.0 simultaneously captures
geometric and radiometric information in form of images with
a single shot, and hence, the captured information can be orga-
nized in frames. Each frame consists of a range image IR, an
active intensity image Ia and a passive intensity image Ip. The
active intensity depends on the illumination emitted by the sen-
sor, whereas the passive intensity depends on the background il-
lumination arising from the sun or other external light sources.
As the captured images have a size of 204 × 204 pixels which
corresponds to a field of view of 40◦ × 40◦, measurements with
an angular resolution of approximately 0.2◦ are provided. The
frame can be updated with high frame rates of more than 25 re-
leases per second. Hence, the device is well-suited for capturing
dynamic scenes. A great advantage of the chosen range imaging
device is that it can also be used within outdoor environments,
but due to the relatively large influence of noise effects arising
from multipath scattering as well as the large amount of ambient
radiation in comparison to the amount of emitted radiation, a lim-
ited absolute range accuracy of a few centimeters and thus noisy
point clouds can be expected. A visualization of captured data is
shown in Figure 2.

Figure 2: Visualization of captured data: normalized passive in-
tensity image (left), range image (center) and textured 3D point
cloud (right).

As the whole system involves multiple range imaging devices for
extending the field of view, it has to be considered that these may
influence each other and that interferences are likely to occur.
This is overcome by choosing different modulation frequencies.
Furthermore, a synchronization of both range imaging devices is
required in order to obtain corresponding frames with respect to
a temporal reference. For this purpose, a software-based trigger
is introduced. Optionally, the range measurement restriction can

also be resolved with a hardware-based unwrapping procedure
(Jutzi, 2012), which requires the use of different modulation fre-
quencies for each of the two range imaging devices.

4 EXPERIMENTAL RESULTS

The experiments refer to the scene depicted in Figure 3. First, a
local coordinate frame is defined in the center between both range
imaging devices with fixed orientation with respect to the sensor
platform. This coordinate frame is referred to as body frame (su-
perscript b). The Xb-direction is oriented to the forward direc-
tion tangential to the rope, the Y b-direction to the right and the
Zb-direction downwards. Subsequently, a global reference frame
(superscript g) is defined which coincides with the initial position
and orientation of the sensor platform. As the relative orientation
between the devices and the platform is already known from a
priori measurements, the projected 3D points Xc

i which are re-
lated to the respective local coordinate frame of a range imaging
device (superscript c) can directly be transformed into the body
frame (superscript b) of the sensor platform according to

Xb
i = Rb

cX
c
i + tb

c (16)

where Rb
c and tb

c describe the rotation and translation between
the respective coordinate frames.

Figure 3: Illustration of the observed scene.

During the whole movement of the sensor platform, a total num-
ber of 116 frames is captured. Each frame contains simultaneous
measurements of the two range imaging devices. Although there
are no measured reference values for each single position in or-
der to check the deviation of the position estimates from the real
positions, a validation of the proposed methodology is still possi-
ble. As the sensor platform moves along a rope, the projection of
the real trajectory onto theXgY g-plane represents a straight line.
Furthermore, a loop closure constraint may be considered, where
start position and end position of the sensor platform are identi-
cal. This is reached by repeating the first frame at the end of the
movement. Additional criteria may involve a visual impression
of several registered point clouds which yields insights about the
scene and the quality of captured data. Hence, the evaluation of
the proposed methodology involves

• the deviation σY from the straight line in the XgY g-plane
with Xg = 0m,

• the absolute error eloop occurring when assuming an identi-
cal start and end position of the sensor platform, and

• a visual inspection of the registered point clouds.

For feature matching, a threshold of tdes = 0.8 is selected. The
estimated trajectory obtained via successive pairwise registration
is shown in Figure 4 in nadir view. The standard deviation σY
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of the position estimates projected into theXgY g-plane from the
straight line with Xg = 0m is σY = 0.0378m, and the absolute
error when considering a closed loop is eloop = 0.0967m. A
visualization of registered point clouds in a common coordinate
frame is illustrated in Figure 5. The figure also shows that the raw
point clouds contain many noisy 3D measurements which have to
be removed for a subsequent scene analysis.

Figure 4: Projection of the estimated trajectory onto the XgY g-
plane (red) and visualization of the distribution of measured 3D
scene points (green).

Figure 5: Visualization of registered point clouds: raw point
cloud data (top) and those 3D points Xi satisfying σi ≤ 0.03m
(bottom).

For data captured at two successive time steps during the move-
ment of the sensor platform, the general appearance of the calcu-
lated histograms, cumulative histograms and inverse cumulative
histograms is visualized in Figure 6, Figure 7 and Figure 8. The
example is based on n1 = 480 detected SIFT correspondences
between the normalized active intensity images and n2 = 508
detected SIFT correspondences between the normalized passive
intensity images, i.e. a total number of n = 928 SIFT corre-

Figure 6: Histograms depicting the occurrence of range reliabil-
ities σi and σ′i (left and center), and the occurrence of SIFT cor-
respondences with a SIFT ratio ρ∗i (right).

Figure 7: The respective cumulative histograms for the his-
tograms depicted in Figure 6.

Figure 8: The respective inverse cumulative histograms (ICHs)
for the histograms depicted in Figure 6.

spondences resulting in the same number of 3D/3D correspon-
dences after the respective projection into 3D space. Finally,
the required time effort for processing each frame and the rela-
tions between two frames has to be considered. The methodology
has been implemented in Matlab and tested on a standard note-
book (2.3GHz, 4GB RAM). For each frame, the average time
required for preprocessing, point quality assessment, feature ex-
traction and point projection is 1.6408s (Table 1). For obtaining
the relations between two frames, the average time required for
feature matching, calculation of weights and point cloud regis-
tration is 0.4821s (Table 2). The separate consideration of the
average time required for the single tasks reveals that feature ex-
traction and feature matching contribute to more than 90% of the
whole time effort. This can significantly be reduced by applying
a GPU-based implementation of SIFT or more efficient feature
detectors and descriptors.
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Task Time
Preprocessing 0.0766s
Point Quality Assessment 0.0250s
Feature Extraction 1.5295s
Point Projection 0.0097s∑

1.6408s

Table 1: Average time effort for the processing of a single frame.

Task Time
Feature Matching 0.4706s
Weighting Scheme 0.0022s
Registration Process 0.0092s∑

0.4821s

Table 2: Average time effort for aligning two point clouds.

5 DISCUSSION

In contrast to standard approaches such as the ICP algorithm, the
presented approach does not require a good a priori alignment
of the scans. Furthermore, it can be applied for very general
scenes without assuming the presence of regular surfaces such
as planes and can even cope with noisy measurements arising
from monitoring within outdoor environments. The experimen-
tal results show that the proposed methodology is suited to re-
cover the transformation parameters fast and accurately by ex-
ploiting synergies arising from the combined use of geometric
and radiometric information. The proposed methodology directly
takes into account the reliability of the 3D information captured
with the two range cameras. Thus, it is even possible to stronger
rely on the measurements of one range imaging device if the
second range imaging device captures spatial information with
more noise. Additionally considering how good the correspond-
ing 3D/3D points fit together with respect to the gradient infor-
mation of the local neighborhood in the 2D intensity representa-
tions strengthens the reliability with a further and complementary
quality measure assigned to each 3D/3D correspondence. Sub-
sequently, in the registration process, the plausibility of the re-
spective 3D/3D correspondences and the iterative improvement
of the geometric alignment of each coordinate are involved. If
the estimated improvement v̂i is relatively large for a coordinate,
the coordinate is considered as rather unreliable and the respec-
tive influence on the estimated transformation is assigned a lower
weight. Due to all these considerations, a high reliability of the
estimated flight trajectory can be expected. The only assumption
of the registration process is the existence of structured 2D inten-
sity representations in order to derive corresponding points via
local image features. This, however, is a common assumption for
all image-based approaches exploiting distinctive points or lines
for point cloud registration.

6 CONCLUSIONS AND FUTURE WORK

In this paper, a new concept for data acquisition with a moving
active multi-view range imaging system and a successive regis-
tration of the captured point clouds has been presented. Thus,
the system is able to face the challenges arising from noisy range
measurements, a limited non-ambiguous range and a limited field
of view in dynamic environments. The proposed methodology
focuses on the use of sparse point clouds and additional attributes
from which a common quality measure considering geometric
and radiometric information is derived via inverse cumulative his-
tograms. This quality measure allows for weighting the influence
of each 3D/3D correspondence on the estimated transformation

according to its reliability. Further applying a plausibility check
for the detected 3D/3D correspondences, the registration process
can be carried out with a weighted least squares adjustment. For
future work, it would be desirable to detect relevant objects in
the scene and describe their behavior by estimating the respective
motion trajectories. This can also be achieved by exploiting the
combined use of geometric and radiometric information as well
as the respective consideration of 3D point cloud data and 2D
image representations. Promising results can be expected.
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