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ABSTRACT: 

 

When full-waveform LiDAR (FW-LiDAR) data are applied to extract the component feature information of interest targets, there 

exist a problem of components lost during the waveform decomposition procedure, which severely constrains the performance of 

subsequent targets information extraction.  Focusing on the problem above, an enhance component detection algorithm, which 

combines Finite Mixed Method (FMM), Levenberg-Marquardt (LM) algorithm and Penalized Minimum Matching Distance 

(PMMD),is proposed in this paper. All of the algorithms for parameters initialization, waveform decomposition and missing 

component detection have been improved, which greatly increase the precision of component detection, and guarantee the precision 

of waveform decomposition that could help the weak information extraction of interest targets. The effectiveness of this method is 

verified by the experimental results of simulation and measured data. 

 

1. INTRODUCTION 

Due to the fact that LiDAR can penetrate vegetation cover to 

get the elevation and the Earth topographic, it has the potential 

of extracting hidden targets. In this field, FW-LiDAR shows 

obvious advantages over traditional LiDAR, which just obtains 

elevation information from surface targets, since it can provide 

abundant features of vertical structure and surface, which reflect 

the inherent characteristics of the ground objects. 

 

Factors such as the scattering characteristics of the target, the 

work mechanism of laser pulse, the difference of the number of 

component in a single pulse, contribute to the records of all the 

component waveform mixture making the valuable information 

difficult to obtain directly . Therefore, it is necessary to process 

the FW data, including the waveform modelling, pre-processing, 

waveform decomposition and component feature extraction. In 

the course of processing, waveform decomposition is the key 

step to get the accurate information of each component. For 

waveform decomposition, the Expectation Maximum (EM) 

algorithm is more mature over the deconvolution (Wu, et al, 

2011) and B-spline (Roncat, et al,2011). But the parameter 

initialization of the EM algorithm needs to pre-estimate the 

number of components and parameters of the component model 

(Wagner, et al,2006). 

 

As to the parameters initialization of waveform decomposition, 

Persson et al. pre-estimate the number of components by using 

the Akaike Information Criterion (AIC). They use the 

generalized Gaussian function as the kernel function and 

estimate the model parameters of backscattered echo waveform 

based on nonlinear least squares, then completed waveform 

decomposition initialization (Persson, et al, 2005). However, 

components will be missed when the waveform is complicated 

or the noise reduction is incomplete. Chauve et al. used a 

nonlinear least square curve fitting in combination with LM 

algorithm to detect waveform iteratively (Chauve, et al,2007). 

This method can detect missing components effectively, but it 

performs the curve fitting without waveform modelling and only 

takes the fitting residual minimum as the optimal conditions for 

the parameter initialization which will introduce an error and 

influence the effect of the component detection. 

 

To solve these problems mentioned above, an enhance 

component detection algorithm is proposed in this paper, which 

combines FMM, LM algorithm and PMMD. All of the 

algorithms for parameter initialization, waveform decomposition 

and missing component detection have been improved, which 

greatly increase the precision of component detection. 

 

2. METHOD 

2.1 Finite Mixed Method (FMM) 

In view of the fact that waveform decomposition based on the 

EM algorithm modelling the waveform by generalized Gaussian 

model shows as equation 1 (Chauve, et al,2007). 

 

This paper takes the FMM to endow the weight for each 

component, which makes the modelled waveform more similar 

to the original waveform. 
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Let X = [X1,...,Xd]
T  be a d-dimensional random variable, which 

follows a k-component finite mixture distribution. x=[x1,…,xd]
T 

is one particular outcome of X. Then, the probability density 

function (PDF) of X can be written as  
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where , 1,...,j j k  is the mixing probability which satisfies  
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and , 1,...,j j k   is the parameter vector which consists of all 

the parameters associated with jth component. 

1 2 1 2( , , , , , , , )k k       Θ  is the parameter vector which contains 

all parameters in the model (Geoffrey, et al, 2000). 

 

2.2 Levenberg-Marquardt (LM) 

LM algorithm is a Nonlinear Least Squares (NLS) fitting 

technique and uses self-iteration to determine whether there is a 

missing component. In contrast with the LM method after 

waveform decomposition, this paper utilizes the LM in the 

parameter initialization process to optimize the initialization of 

the components number. This method can enhance the 

efficiency of component detection and minimize the probability 

of missing components. 

 

The fitting parameter 
*  is computed as follow: 
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with the quality of the fit   evaluated by 
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The first step of the LM algorithm is a coarse peak detection, 

based on zero-crossings of the signal’s original derivative. It 

allows us to estimate the number and the position of the echoes 

in order to initialize the NLS fitting. In the second step, 

additional peaks are searched in the difference between modelled 

and raw signals. If new peaks are found, the fit is performed 

again and its quality re-evaluated. The process is iterated until 

no further improvement is obtained. The selected solution is the 

model providing the minimum value for Eq. (5). 

 

2.3 Penalized Minimum Matching Distance (PMMD) 

PMMD method selects the number of mixture components that 

minimises the penalized matching distance between the PDFs 

estimated by the EM algorithm and Parzen’s method. It 

considers both of the conditions when the number of 

components is either too large (over-fitting) or too small (under-

fitting). This method is leading into the process of component 

detection to judge whether there is a missing component after 

the first decomposition of the waveform in this paper. When the 

number of components is too large or too small, the PMMD 

will get significantly large. So the correct number of components 

in FMM can be determined by the choice of minimum distance 

value.  

 

2.3.1 Estimation of PDF via Parzen’s method: Parzen 

provides a non-parametric method for estimating the PDF from 

a finite set of data (1) ( ){ ,..., }nX x x .The parzen PDF is 

estimated as 
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where n is the size of data X, and   is a kernel function defined 

by 
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The matching distance  used in this paper is a measure for the 

similarity between two PDFs ( )parzenP x and ( )emP x . It is 

defined as 
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2.3.2 Penalized matching distance: The motivation of our 

proposed penalized matching distance method is based on the 

following observation. When k is unnecessarily large, some of 

the mixing probabilities { , 1,..., }j j k   will be very small.  

 

As a result, their product 
1 2 ... k    will be also very small. 

Therefore, we are able to control the size of k by controlling the  

size of the
j ’s. Hence, if we define the following penalty term: 
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and add it to the matching distance  in Eq. (8), then we get the 

penalized matching distance  as follows: 
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As we just discussed, for unnecessarily large k, 
1 2 ... k    will 

be very small and 
penalty will be very large. So, large k is 

indirectly penalized if we choose the k* corresponding to the 

minimum penalized matching distance 
*  as the number of 

mixture components. This is indeed quite important for the 

excellent performance of our algorithm, as it is shown in Section 

3. 

 

The operation carried out by the penalized minimum matching 

distance-guided EM algorithm is as follows. For each 

k(k=1,2,…), EM algorithm with the selected k is iterated until it 

converges to  . After that,  and
penalty are calculated based 

on Eqs. (8) and (9). When it is over-fitted, 
penalty will be large; 

when it is under-fitted,  will be large. So the k*, which 

corresponds to the minimum
* , is selected as the right number 

of mixture components. (Luo, et al, 2006) 

 

2.4 Algorithm Design 

Through the analysis of the above methods, we summarized the 

algorithm as the following steps: 

(1) As input is FW-LiDAR waveform data after filtering 

processing, use LM algorithm to estimate the probability 

density of sampling point intensity in a single pulse and 

calculate the optimal initial single component P1. 

(2) Explore the best new component 
*( | )if x  with its weight 

*

i in FMM model. 

(3) Add the detected component with its weight into the mixture 

model based on the principle of FMM model. 

 

 

 
* *
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(4) Estimate and update parameters of each component using 

the EM algorithm until convergence. 

(5) Calculate PMMD and determine the number of components. 

(6) Determine whether the iteration is terminated or not, and 

output the number of components and parameters of each 

component finally. 

The flow char of the algorithm is shown in Figure 1. 

 

Waveform data

after preprocessing

Calculate the optimal

initial single component

Find the optimal 

component and its weight

Waveform decomposition

EM

Missing components?

YES

LM

NO

Determine the optimal

parameter vector Θ

Add New component and

its weight into the mixture model

FMM

PMMD

 
Figure 1. Flow char of the component detection algorithm 

 

3. EXPERIMENTAL RESULTS 

3.1 Experiment with Simulation Data 

In this paper, we use simulation and measured data to validate 

the algorithm. As shown in Figure 2, the simulation data 

contains four components in a single back scattered pulse 

waveform. The sampling interval is 1ns and including 50 

sampling points.  

 

 
Figure 2. Simulated backscatter return waveform which contains 

4 components 

 

We compare our proposed algorithm with (1) curve fitting (CF) 

combined with the LM and (2) AIC combined with the LM.  
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The result is shown in Figure 3. 

 

All waveform decomposition algorithms are based on EM 

algorithm, the only difference between these algorithms lie in the 

estimate of initial parameter in EM algorithms and the 

optimization of iterative decomposition results. 

 

CF and LM oriented waveform decomposition algorithm (green 

- • -) and AIC and LM oriented (red ---) waveform 

decomposition can both discriminate the third and the forth 

components of the backward scattering waveform, but the first 

two components are missing; while FMM and LM oriented 

(blue -) waveform decomposition algorithm, which can identify 

all the four components of the scattering echo waveform, 

therefore greatly improve the component detection. 

 

 
Figure 3. Waveform (simulated data) decomposition results 

based on three different methods 

 

3.2 Experiment with Measured Data 

The measured data are collected in September 2012 using the 

IGI's LiteMapper 5600 laser radar system at Miyun District of 

Beijing, and the point density is about 4 points/m2.  

 

In order to prove the validity of the proposed algorithm, we 

select the measurement zone which may has multi components 

from the image of the measured area. We also compare our 

proposed algorithm with (1) CF combined with the LM and (2) 

AIC combined with the LM. The result is shown in Figure 4. 

 

 
Figure 4. Waveform (measured data) decomposition results 

based on three different methods 

 

All of the method can detect three components, but according to 

the detection results, FMM and LM algorithm can more 

accurately restore the components of the original waveform 

information, which are consistent with the original waveform 

data therefore is correct and validated. 

 

Then we selected four types of data, including farmland, roads, 

forest land and buildings data, and use the data of the farmland 

as an example to show the detection results which contain 1, 2, 

3 components data respectively . We use the raw data as ground 

truth and consider the variance and degrees of freedom of the 

hybrid model of waveform data after fitting to evaluate the 

effect of enhanced detection result (Chauve, et al, 2007): 
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where N indicates waveform sampling number, p is the 

parameter number of waveform decomposition model. 

 

The results of the AIC and LM combined algorithm is similar to 

the CF with LM. When the number of component is small, such 

as farmland, road and building, the AIC with LM and CF with 

LM algorithm are able to detect the components of the 

waveform completely and the   is small. While the number of 

component is big, the AIC with LM and CF with LM algorithm 

wouldn’t detect completely and the   will be larger.  The 

FMM with LM can detect the weak component in the 

waveform and in the   is small in all the different types of the 

area.  

 

The proposed algorithm has 20% accuracy gain compared with 

the curve fitting and LM combined algorithm,  

 

Method 
CF+LM AIC+LM FMM+LM 

Number   Number   Number   

Number 

1 411 1.0540 428 1.0366 407 0.8776 

2 27 1.0280 10 0.7088 30 0.7018 

3 0 —— 0 —— 1 0.6657 

Total 438 1.0524 438 1.0291 438 0.8651 

 

Table 1.  The performance evaluation of waveform 

decomposition method ---- farmland 

 

Type Number 
CF+LM 

Factor 

AIC+LM 

Factor 

FMM+LM 

Factor 

Road 337 0.9537 0.9167 0.8882 

Forest 504 1.2040 1.445 0.9149 

Building 434 1.0240 1.0460 0.8651 

 

Table 2. The performance comparison of detection method 
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4. CONCLUSIONS  

The component detection method we propose in this paper 

increase the accuracy of waveform decomposition by detecting 

all the components in the backward scattering echo waveform. 

The proposed method is applicable to the component detection 

of multi-component and complex waveform. There are obvious 

advantages for the multi-component detection such as hidden 

target and the weak component information. It can avoid loss of 

information of weak component, and provide effective support 

for subsequent data applications such as hidden target extracting, 

topographic mapping and digital city modelling. 
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