
OBJECT-BASED ANALYSIS OF AERIAL PHOTOGRAMMETRIC POINT CLOUD AND 

SPECTRAL DATA FOR LAND COVER MAPPING  
 
 

M. Debella-Gilo a, *, K. Bjørkelo a, J. Breidenbacha, J. Rahlf a 
 

 
a Norwegian Forest and Landscape Institute, P.O.BOX 115, 1431 Ås, Norway – (mgd*, kbj, job, jor) 

@skogoglandskap.no 
 
 
 

KEY WORDS: Photogrammetry, Point cloud, Object-Based Image Analysis (OBIA), Land cover mapping, Image matching, Forest  
 
 
ABSTRACT: 

 
The acquisition of 3D point data with the use of both aerial laser scanning (ALS) and matching of aerial stereo images coupled with 
advances in image processing algorithms in the past years provide opportunities to map land cover types with better precision than 
before. The present study applies Object-Based Image Analysis (OBIA) to 3D point cloud data obtained from matching of stereo 
aerial images together with spectral data to map land cover types of the Nord-Trøndelag county of Norway.  The multi-resolution 
segmentation algorithm of the Definiens eCognitionTM software is used to segment the scenes into homogenous objects. The objects 
are then classified into different land cover types using rules created based on the definitions given for each land cover type by the 
Norwegian Forest and Landscape Institute. The quality of the land cover map was evaluated using data collected in the field as part 
of the Norwegian National Forest Inventory.  The results show that the classification has an overall accuracy of about 80% and a 
kappa index of about 0.65. OBIA is found to be a suitable method for utilizing 3D remote sensing data for land cover mapping in an 
effort to replace manual delineation methods. 
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1. INTRODUCTION 

The Norwegian Forest and Landscape Institute (NFLI) produces 
areal resource maps with different qualities (scale and thematic 
details). One of such maps is the AR5 which is a land cover/use 
map at the scale of 1:5000. This map contains four levels of 
thematic information, namely: (1) the land use/cover type, (2) 
the dominant tree species types in forested areas (i.e. forest, 
grasslands and wetlands), (3) the site index which is the 
description of the site’s productivity with respect to forest 
products, mainly timber, and (4) the ground condition which 
describes the geological and soil condition of the site.  
 
Traditionally these maps are produced through intensive field 
works with the help of analogue aerial photographs until 
recently when manual digitization of digital orthophotos took 
over. It took decades to complete the economically productive 
part of the country (i.e. agricultural and forest areas) with the 
map of that scale. The Norwegian government requires that 
such information be updated and areas outside the economical 
areas need to be included. The conventional technique has 
become more and more costly to meet such demands. 
Fortunately technological developments in the areas of remote 
sensing and GIS in the past years and decades have created the 
tools and means of acquiring this information effectively 
creating the opportunity to take land cover mapping to a new 
stage.   
 
On one hand, innovations in sensor technologies and 
positioning systems have led to the development of aerial laser 
scanning (ALS) which is nowadays widely used for acquiring 
3D data with high accuracy and spatial density. ALS 3D point 
cloud data combined with spectral information from aerial 

cameras and other remote sensors have been used for land cover 
mapping and characterization (Antonarakis et al., 2008; Yu et 
al., 2011). ALS adds height information which is crucial in 
separating some land cover types and computing additional 
attributes. On the other hand, innovations in imaging sensors, 
image matching software and computer hardware performances 
have created the possibilities of acquiring images at high spatial 
and spectral resolutions and matching stereo images with faster 
speed, higher spatial precision and density. The dense matching 
of high spatial resolution stereo images with high precision and 
high spatial density can now produce good quality 3D point 
clouds. This is claimed to have the potential of replacing the 
ALS data in some applications reducing some of the costs 
incurred by ALS data acquisition (Leberl et al., 2010). Such 
high resolution data with additional third dimension requires 
careful selection of analysis methods.  
 
Image analysis techniques have also progressed creating among 
others the possibilities of analyzing images both at supra- and 
sub-pixel levels.  Supra-pixel analysis is necessitated when the 
mean object size is significantly larger than the pixel size. 
Supra-pixel analysis is relevant in cases such as when sub-meter 
spatial resolution photogrammetric images are used for land 
cover mapping. The best known supra-pixel image analysis 
method is known as Object-Based Image Analysis (OBIA).   
OBIA involves segmentation of images into homogeneous 
objects which are made of spatially contiguous pixels with 
minimum dissimilarity at a given scale (Blaschke, 2010).  The 
objects can then be characterized based on a given set of 
attributes, and classes can be assigned to the objects using 
appropriate algorithms. Studies have shown that the objects are 
better representations of natural objects and phenomena than 
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pixels, and OBIA is known to produce better quality maps than 
pixel-based classification methods at least in 2D remote sensing 
(Blaschke, 2010; Hay and Castilla, 2006; Whiteside et al., 
2011).    
 
In this study the opportunities provided by such technologies 
are explored with the aim of updating and extending its existing 
land cover maps.  As a result of the ever improving qualities in 
data and analysis methods, partial or full replacement of manual 
delineation of land cover types is becoming a reality. A study is 
thus conducted to develop methods of mapping land cover types 
effectively by utilizing aerial photographic images acquired for 
routine monitoring of Norwegian land surface. The method 
utilizes matching of the aerial images to create 3D point clouds 
and uses this information together with the spectral data to map 
land cover at detail scale by integrating class definitions used in 
manual delineation into automated classification. Object-based 
image analysis (OBIA) is employed as analysis method for the 
datasets. The paper continues by explaining the data and 
methods used followed by the discussion of the results obtained 
finally winding up by giving some concluding remarks.   
 

2. METHODS 

2.1 Study area  

This study is conducted in the Nord-Trøndelag county of 
Norway (Figure 1). The county is centred approximately around 
64.41o N  and 12.00o E. Forest is the dominant land cover type 
of this county covering over 55% of the land area covered by 
the AR5 map excluding water. This is followed by mire which 
covers about 15% of the same total area.  

 
Figure 1. The location of the Nord-Trøndelag County (grey) in 

Norway 
 
2.2 Data acquisition 

Three different data sources are used in this study; namely, 
aerial images, digital terrain models (DTM) and field data. Each 
of these data sources are explained further hereunder. 
 

2.2.1 Aerial images: The aerial images were acquired during 
the summer (June to September) of 2010. The ULTRACAM Xp 
digital camera was used for the acquisition.  The images were 
taken with radiometric resolution of 12 bit and ground sampling 
distance of 35 cm with 60% along and 20% across track 
overlap.  The overlapping images were matched by the BLOM 
GEOMATICS AS, using the software MATCH-T. The extreme 
terrain option with the 2.5D filtering was used for the matching. 
Hierarchical matching starting with feature-based matching and 
ending with block-based matching was used. The areas in which 
the matching failed due to occlusion or lack of contrast, the 
matching points were interpolated by the software. This resulted 
in one point per pixel, i.e. mean point density of about 9 points 
per m2. The point clouds together with spectral data in the red, 
green and infrared channels are delivered in the LAS 1.2 data 
format with tiles of size 1200 m by 1600 m (Figure 2).  
  

 
Figure 2. A 3D view of an example tile of photogrammetric 

point cloud with false colour (IR, R and G) 
 
2.2.2 DTM data: the 3D point cloud data obtained from the 
image matching contain the digital surface model (DSM) with 
elevation over geodetic datum. However, it’s the normalized 
DSM that is useful for our purpose of mapping land cover. 
Unlike ALS, the normalization of photogrammetric DSM 
necessitates the availability of accurate DTM from other 
sources. Two types of DTM with different qualities are 
available for the study area. Some part of the county is covered 
with a 1 m spatial resolution DTM derived from ALS data. The 
whole county is also covered with the national DTM which has 
a 10 m spatial resolution with variable and lower accuracy. 
Where available, the ALS DTM is used for the normalization of 
DTM. In other areas the national DTM is used. Slope and 
topographic wetness index are also computed from the national 
DTM data as it covers the watersheds completely. 
 
2.2.3 Field data: automated mapping of land cover from 
remote sensing data necessitates understanding of the different 
land cover types with respect to the remote sensing data. To this 
end ground collect data are important. The NFLI has permanent 
systematic network of sample plots from which accurate ground 
data are collected as part of the National Forest Inventory. Each 
sample plot is a circle covering an area of 250 m2 with a 
uniform spacing of 3 km.  
 
2.3 Data formats and conversion 

The photogrammetric 3D point clouds were delivered in the 
standard LAS data format. Each LAS file contained horizontal 
and vertical positions and three color bands (red, green and near 
infrared). The near infrared is used instead of the blue due to its 
greater importance in vegetation mapping.  The LAS data are 
converted to four channel raster files in eCognition using a rule 
set created for this purpose. 
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2.4 Computation of CHM and NDVI 

As stated above the DSM is normalized by subtracting the 
digital terrain model (DTM) from the DSM. The normalized 
DSM is the height of all physical structures on the ground 
surface including vegetation, buildings, bridges, towers, etc. In 
forested areas, the normalized DSM is the same as the canopy 
height model (CHM). In areas where the ALS DTM is 
available, the DSM is normalized by direct subtraction of the 
DTM from the DSM. Outside these areas, the national DTM is 
interpolated to the resolution of the DSM using a bilinear 
interpolation algorithm and then the interpolated DSM is 
subtracted from the DSM. The quality of the normalized DSM 
or CHM is thus dependent on the type of DTM used in addition 
to the inherent quality of the DSM.  
 
The normalized DSM needs to be supported by data on 
greenness to later identify vegetated and non-vegetated areas. 
The NDVI (Normalized Difference Vegetation Index), which is 
computed from the spectra of the red and near infrared bands, is 
a parameter that is widely used for this purpose. Finally both the 
normalized DSM and the NDVI are added to the multi-channel 
raster data for further analysis. 
 
2.5 The Object-Based Image Analysis (OBIA) 

In OBIA, the analysis units are objects rather than pixels. 
Objects are adjacent pixels with minimum dissimilarity in the 
given set of features used for the object definition and at a given 
scale of conceptualization.  Two fundamental criteria for pixels 
to form an object are that they have to be adjacent to each other 
and their dissimilarity in the set of attributes on which object 
definition is based has to be below the threshold set by the scale 
of conceptualization. Such objects are mere aggregation of 
pixels. Their classes are not known until they are assigned to a 
certain class. Thus OBIA involves two major steps. The first is 
the delineation of the objects at a defined scale based on 
selected set of features, i.e. segmentation. The second step is the 
assignment of a class to each of the objects based on their 
feature characteristics, i.e. classification.  
 

2.5.1 Segmentation: eCognition offers many segmentation 
algorithms. However, the multiresolution segmentation 
algorithm is chosen due to its hierarchical approach in 
aggregating objects at different scales. In multiresolution 
segmentation there are a number of parameters that need to be 
set. First, the features to be used have to be selected and their 
respective weight needs to be set.  The features used in our 
segmentation process are the three color bands, the NDVI and 
the CHM. All of them are weighted equally. Second, the scale at 
which the objects are to be defined also needs to be set. In 
multi-resolution segmentation the scale parameter sets the 
highest permitted heterogeneity within an object, thereby 
determining the size of the objects.  The greater the scale, the 
higher is the permitted heterogeneity and consequently the 
larger is the average object size. Third, the shape-color 
proportion has to be set. One of the advantages of OBIA is the 
fact that it can utilize the geometric properties of the objects in 
addition to the spectral data. We can therefore define the 
homogeneity criteria based on color and shape. eCognition 
gives options for weighting values of the shape parameter and 
compactness.  Assuming that no ground surface resource is 
limited by shape, we limited the shape parameter to a mere 0.1. 
That means that shape influences only 10% of the segmentation 
process while the spectral information and CHM control 90% of 
the process.   It is important to recall that eCognition’s scale 
parameter and shape-color proportion are subjective and their 
optimal values are obtained only through trial and error. 
 
2.5.2 Classification: Once the scenes are segmented into 
homogeneous objects the next step is to assign a class to each 
object. Since the idea of the study is to mimic the traditional 
manual mapping as close as possible, the existing classification 
algorithms in eCognition are not used. Rather, rules that rely on 
the class definition of the Norwegian Forest and Landscape 
Institute  (Bjørdal and Bjørkelo, 2006) are created. These 
definitions are implemented using rule sets constructed in 
eCognition. Class definitions in AR5 are modified to fit the 
remote sensing data and the hierarchical approach used here. 
Translating to the AR5 land cover types was done afterwards. 
The mire areas are identified based on the spectral data, slope 
and topographic wetness index. The classified objects are 
exported as shape files with statistics of some of the important 
attributes to further analyze in ARCGIS. The results are 
evaluated using the field data from NFI and confusion matrix is 
created to quantitatively present the quality of the produced 
land cover map. The land cover types of the NFI plots are 
translated from the NFI data based on the definition of each 
land cover type given for the AR5 map.  
 
 

3. RESULTS AND DISCUSSIONS  

As shown in Figure 3 below, good segmentation result is 
obtained by keeping the objects small enough to later separate 
different sub-types of land cover such as tree species and large 
enough to avoid unnecessary aggregation of different land cover 
types. It is observed that careful selection of the set of features 
used for the segmentation and the conceptualization scale is the 
key step in obtaining meaningful segmentation results. 
Meaningful segmentation here means that the boundaries of the 
different land cover types are segmented as precisely as 
possible. 
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Figure 3. An example of an image tile segmented using the 

multiresolution algorithm 
 
The classification resulted in four major classes outside the 
agricultural areas as shown, for example, in figure 4. These are 
forest, mire, biotic open areas (mainly bush and grasslands) and 
abiotic open areas (mainly exposed rock surfaces). The open 
areas are split into two classes since this is required by the NFLI 
although they are lumped together in the existing AR5 map. The 
splitting of the open areas into two classes is also part of the 
utilization of the capabilities of remote sensing data in 
separating between vegetated and bare grounds. The other land 
cover types such as water, roads, settlements, etc. are clipped 
out using existing data sources. 
 

 
Figure 4. Classification result of the example tile 
 
Table 1 presents the confusion matrix of the classification 
where the DSM is normalized using the ALS DTM. The overall 
accuracy and kappa index for these areas is 84% and 0.67, 
respectively. Table 2 shows the confusion matrix of the areas 
where the DSM is normalized using the national DTM. The 
overall accuracy and kappa index for these areas is 72% and 
0.56, respectively. These results show that the accuracy of the 
classified land cover is affected by the quality of the DTM. The 
use of the ALS DTM with 1 m spatial resolution improved the 
overall classification accuracy by over 10%. This is attributed to 

the fact that forest dominates the land cover type of the area and 
it is segmented with better precision in the first case as a result 
of the better quality CHM obtained when the ALS DTM is 
used. Note that the overall accuracy and kappa index presented 
in the abstract are obtained by combining the two tables. 
 
Actual land 
cover type 
translated 
from the NFI 
sample plots 

Predicted land cover type Total 
area 

(m
2
) 

Produce
r 
accuracy 
(%) 

Forest Biotic 
open 
areas 

Abioti
c 

open 
areas 

Mire 

Forest 
54012 2225 508 2351 59095 91 

Open areas 
119 8824 3439 621 13003 94 

Mire 
3751 3263 657 4339 12011 36 

Total area 

(m
2
) 57882 14312 4603 7312  

User 
accuracy (%) 93 77 75 59  

Table 1. Confusion matrix of the classification of the areas 
covered by the ALS DTM 
 
Additionally, the accuracy of the classification varies from one 
land cover type to another. Forest has the highest accuracy 
whereas mire has the lowest accuracy. This can be explained by 
the fact that, greenness (NDVI) and canopy height model 
(CHM) can strongly discriminate forests. Mire however is not 
strongly discriminated by remote sensing and DTM data. The 
distribution of mire is dependent on geological drainage and the 
availability of sphagnum vegetation which are not easily 
detectable by the remote sensing data used here. Besides, the 
lack of accurate DTM for the computation of slope and 
topographic wetness index may have led to the poor prediction 
of the mire areas. 
 
In general the classification accuracy is found to be satisfactory 
for forest and the two types of open areas implicating that the 
method can be used to update and extend the existing land 
cover maps. However, other approaches are needed to improve 
the quality of the prediction of the areas covered by mire. The 
accuracy tables should be considered with caution as the areas 
used for the accuracy evaluation are much smaller in relation to 
the total area covered by the study.  
 
Actual land 
cover type 
translated 
form NFI 
sample plots 

Predicted land cover type Total 
area 

(m
2
) 

Produc
er 
accurac
y (%) 

Forest Biotic 
open 
areas 

Abioti
c 

open 
areas 

Mire 

Forest 
43601 7248 1255 3410 55513 80 

Open areas 
7777 16688 17534 6917 48916 70 

Mire 
2410 4166 3864 12932 23371 55 

Total area 

(m
2
) 53788 28102 22652 23259  

User 
accuracy (%) 80 60 77 56   

Table 2. Confusion matrix of the classification of the areas the 
CHM is computed using the national DTM 
 
 

4. CONCLUSIONS  

The study shows that photogrammetric point cloud data 
supplemented by spectral information can produce good quality 
land cover maps at very detailed scale. The addition of the 
height information particularly improved the separation of 
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forests from other vegetated areas. However, a DTM with high 
accuracy and spatial resolution is important in improving the 
result of the classification. OBIA is found to be a well suited 
method for the segmentation and classification of land cover 
types using such high spatial resolution data. The segmentation 
of the images prior to classification removes the salt-and-pepper 
patterns known to be common in pixel-based classification. The 
fact that good quality map can be produced without using the 
in-built classification algorithms but rules based on the class 
definitions created for manual mapping shows that we are 
getting much closer to replacing manual delineation of land 
cover by automated remote sensing approach.  
 
The project will further continue to estimate the tree species 
types and site quality index of the forest segments based on the 
spectral, canopy height, NDVI, terrain and other auxiliary data. 
Additional information such as mean biomass, volume and 
mean canopy height can also be computed for the forest areas 
using methods presented in (Breidenbach and Astrup, 2012; 
Breidenbach et al., 2010). This has implications as, for example, 
photogrammetric stereo images could be utilized to understand 
the expansion and growth rate of forests. 
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