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ABSTRACT:

In this paper we propose to study the potential of jointly using polarimetric and tomographic SAR data to recognize and localize
buildings in complex scenarios. We present extraction methods for both polarimetric and tomographic features. One the one hand,
we propose to use the polarimetric bilateral filter that has proved to be a powerful tool to retrieve the polarimetric covariance matrix
while reducing speckle and preserving edges. Thus, polarimetric decompositions can be used for physical interpretation. On the other
hand, the TomoSNI and TomoSeed algorithms allow to respectively extract interest points and segment geometric primitives in 3D
point clouds obtained with tomographic focusing methods. We show how the output of such algorithms could be combined in order
to allow the extraction of buildings. We also analyze different issues related to complex scenarios that may impede a correct detection
and discuss some possible solutions.

1 INTRODUCTION

Polarimetric SAR systems provide useful information related to
the backscattering mechanisms resulting from the interaction be-
tween a polarized electromagnetic wave and physical media. Po-
larimetric images are collected by emitting a series of electro-
magnetic pulses and receiving backscattered signals through dif-
ferent polarized antennae. Polarimetric decomposition methods
(Cloude and Pottier, 1996) allow a physical interpretation of the
different scattering mechanisms inside a resolution cell. Thanks
to such decompositions it is possible to extract information re-
lated to the intrinsic physical and geometrical properties of the
imaged media.

SAR tomography is the extension of conventional two-dimensional
SAR imaging principle to three dimensions and is achieved by the
formation of an additional synthetic aperture in elevation, using
a coherent combination of images acquired from parallel flight
tracks. The introduction of tomographic SAR allows a direct lo-
calization of all scattering contributions in a volume (Reigber and
Moreira, 2000). This is performed either by FFT-based beam-
forming or spectral methods such as Capon, MUSIC (Guillaso
and Reigber, 2005) and the more recent CS (compressive sens-
ing) (Zhu and Bamler, 2012).

In this paper, we use the high resolution MUSIC method (Guil-
laso and Reigber, 2005) in order to detect scatterers associated to
ground and buildings. Indeed, this method enhances the height
estimation of objects.

We propose here to jointly use the information given by polarime-
try and tomography in order to detect the presence of buildings
in the scene. From a polarimetric point of view, it is potentially
possible to detect points that belong to a building edge since they
are characterized by a strong return. This may be performed by
estimating the power (SPAN) of the polarimetric covariance ma-
trix from a polarimetric SAR (PolSAR) image. In order to avoid
false alarms due to speckle, the data has to be previously filtered
by an adaptive method. Here, we propose to use the recently de-
veloped bilateral PolSAR filter (D’Hondt et al., 2013) to extract
speckle-free polarimetric features.

However, locating the facade of a building allows only a partial
detection of the object. Distinguishing the roof is not possible

with polarimetry due to its scattering similarity with bare soil.
However, thanks to tomography, it is possible to estimate the
heights of the different scatterers present in the resolution cell.
Furthermore, since parts of a roof can generally be approximated
by a piecewise planar structure, it is possible to group all the pix-
els belonging to such a structure to obtain a segmentation of the
scene into geometric primitives.

To perform this challenging task, we propose to combine recent
developments in point extraction, characterization and segmenta-
tion of polarimetric and tomographic SAR data (Guillaso et al.,
2012, D’Hondt et al., 2012).

Therefore, considering the fact that the facade pixels should be
spatially close to the roof ones, using both polarimetric and tomo-
graphic information should make it possible to retrieve the entire
structure of the building, according to the simple representation
facade/roof.

Our information extraction method is composed of three main
steps:

• First, a statistical detection of interest points is performed.
In fact, low SNR and phase calibration errors affect the per-
formance of spectral methods, resulting in inaccurate lo-
calization of scatterers and isolated points with no physical
meaning. Spurious points can be successfully discarded by
the method of (Guillaso et al., 2012) that uses a robust sta-
tistical threshold detecting scatterers with a significant am-
plitude.

• Then, a segmentation of building heights in terms of geo-
metric primitives is performed to group pixels into piece-
wise planar patches (D’Hondt et al., 2012). This method is
based on region growing, is robust to outliers and allows an
automatic adaptation to the local level of noise that is present
in each of the structures to detect.

• Finally a polarimetric feature extraction allows to reduce
speckle while preserving bright lines due to buildings. Those
lines can then be detected by a statistical thresholding of the
PolSAR covariance matrix power (SPAN). Besides this fea-
ture extraction should also allow to characterize surface and
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Figure 1: Optical image representing the test area (top), corre-
sponding SAR intensity image (bottom).

double bounce scattering by the use of PolSAR decomposi-
tion methods.

We present some experiments by applying our feature extraction
to the POLTOM dataset provided by the DLR over the Oberp-
faffenhofen that is composed of 14 fully polarimetric tracks in L-
Band. While our feature extraction results are potentially promis-
ing, we show that for the case of complex scenarios with interac-
tions with multiple buildings and 45 degree orientation, polarime-
try might not be sufficient to detect buildings and propose some
possible further investigation.

2 PRESENTATION OF TEST AREA

Fig. 1 shows a manually selected area that we will use in our ex-
periments. It has been extracted from the POLTOMSAR dataset
that is composed of 14 fully polarimetric tracks in L-band and has
been acquired by the ESAR sensor from DLR over the Oberpfaf-
fenhofen area. The optical picture and the corresponding SAR in-
tensity are shown. This area has been selected because it contains
several buildings with complex structures and spatial proximity,
that makes it challenging for detection algorithms.

3 EXTRACTION OF POLARIMETRIC FEATURES

3.1 Polarimetric SAR data

Polarimetric SAR systems measure the relation between the trans-
mitted and received electromagnetic wave in two orthogonal po-
larizations in the form of a scattering matrix (Lee and Pottier,
2009)

S =

[
Shh Shv
Svh Svv

]
, (1)

where h and v denote horizontal and vertical polarization, respec-
tively. The reciprocity assumption in the mono-static case leads
to Shv = Svh. For analysing purpose, it is convenient to repre-
sent this scattering information in the form of a target vector

kp =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]T , (2)

where p denotes the Pauli basis.

On distributed targets, this information is generally considered in
a statistical framework. Under the fully developed speckle hy-
pothesis, the target vectors k follow a complex circular d-variate

Normal distribution (Goodman, 1963)

p(k) =
1

πd|Σ| exp
(
−k†Σ−1k

)
, (3)

where |.| is the determinant of a matrix and † represents the con-
jugate transpose of a complex vector. This distribution is charac-
terized by its second order moment Σ = E[kk†] that contains
information about power and relative phase between the polari-
metric channels. When the scattering vector is expressed in the
Pauli basis, the matrix Σ = T is usually called coherency matrix
although it is technically a covariance matrix.

Unfortunately, Σ has to be estimated from the data over several
independent samples, resulting in a loss of spatial resolution. The
sample covariance is expressed as

Σ̂ =
1

L

L∑
i=1

kik
†
i , (4)

and is obtained by an operation called multi-looking that consists
in taking the average of contiguous pixels.

Under this Gaussian hypothesis, the multi-look covariance matrix
follows a complex Wishart density (Goodman, 1963). The esti-
mation accuracy can be improved by increasing the number of
samples. Unfortunately, increasing this number is only possible
on homogeneous areas where pixels arise from identical scatter-
ing mechanisms.

3.2 POLSAR Bilateral Filter

It has recently been shown (D’Hondt et al., 2013) that the PolSAR
bilateral filter was a useful tool for the estimation of the covari-
ance matrix from noisy data. In fact, this filter allows a high
amount of speckle filtering in homogeneous areas and a good
restoration of edges and deterministic scatterers while preserving
the polarimetric information. The estimated covariance at loca-
tion x0 is computed by performing a weighted sum of the sample
covariance matrices at each position xi inside a sliding window:

Σ̃(x0) =
∑

xi∈W
wiΣ̂(xi). (5)

The weights wi are expressed by defining a similarity measure
based on a matrix distance d(., .)

wi(xi) =
fs(||xi − x0||2)fr [d(Σ(xi),Σ(x0))]∑

xi∈W fs(||xi − x0||2)fr [d(Σ(xi),Σ(x0))]
,

(6)
where the function fs and fr have a Gaussian shape.

Since the covariance matrices lie on the manifold of Hermitian
positive definite (HPD) matrices, recent studies showed it was
natural to use appropriate distances (Pennec et al., 2006, Bar-
baresco, 2009). An affine invariant metric has been proposed as a
replacement for the Euclidean metric to deal with HPD matrices.
The corresponding distance between two matrices Σ1 and Σ2 is
(Barbaresco, 2009)

dai(Σ1,Σ2) = ‖log[Σ
− 1

2
1 Σ2Σ

− 1
2

1 ]‖F , (7)

where log() is the matrix logarithm and ‖.‖F the Frobenius norm.
This distance corresponds to the length of the geodesic (i.e. the
shortest path) between two points on the manifold and is invariant
by affine transformation.
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Figure 2: Pauli RGB representation of the original image (top)
and the bilateral filtered one (bottom).

3.3 Polarimetric analysis

Fig. 2 shows the Pauli RGB representation of the original po-
larimetric data and the results of applying the PolSAR bilateral
filter. It may be observed that while allowing a strong reduction
of speckle, the filter captures well the spatial properties of the
scene allowing a significant visual enhancement. It may also be
noticed that all the bright parts due to building facades are well
preserved. In order to further analyze the polarimetric informa-
tion, we have applied the widely used H/α or Entropy/Alpha
decomposition to the filtered image. The entropy parameter is
bounded between 0 and 1 and describes the random behavior of
a target: if H = 0 the target is considered as purely deterministic
and only one scattering mechanism is present inside the resolu-
tion cell. On the contrary, H = 1 means that the target is totally
random and that 3 scattering mechanisms equally contribute to
the pixel. This is generally the case with volume scattering due
to vegetation. The α parameter characterizes the type of domi-
nant scattering mechanism and has a range from 0 (trihedral or
surface) to π/2 radians (dihedral or double bounce). Fig. 3 show
images of those parameters over the selected area. Finally, Fig. 4
show the SPAN image (the sum of the diagonal elements of the
covariance matrix) extracted from the filtered image and the ex-
tracted bright lines that are produced by the strong returns from
building facades. The extraction of such lines is performed in two
steps. First, following the observation of (Lee et al., 2009) that
the strong intensities produced by deterministic scatterers corre-
spond generally to a very small proportion of the pixels (typically
2− 3%) we set a threshold corresponding to the 97-th percentile
of the intensity of the image. The pixels above the threshold be-
long to the bright structures. In order to keep only long lines,
we then perform a connected component labelling and remove
the segments that have less than 30 pixels. It can be seen that
this allows to extract the bright line corresponding to the biggest
building but it is not clear how the other extracted lines are re-
lated to the other smaller buildings. This is due to the fact that
the line/roof model is only valid for buildings with a very simple
structure.

4 EXTRACTION OF TOMOGRAPHIC FEATURES

4.1 Tomographic focusing by SP-MUSIC

SAR tomography consists in focusing several SAR images in
the third dimension, in order to image volumetric areas, such as

(a) α

(b) H

Figure 3: Images of theH/α parameters computed on the filtered
image.

forests or cities. This means to form a synthetic aperture along
the direction perpendicular to azimuth and to the radar line of
sight. The geometry of a tomographic data acquisition uses typ-
ically K parallel tracks non uniformly spaced, which observe the
same scene. From the K images, 3D profiles might be extracted.
This makes it possible to detect targets under covered volume or
to generate 3D representation of the scene under study.

A tomographic data acquisition system is constituted by K sen-
sors, or interferometric paths. The signals xk received by each
sensor k provided by D scatterers localized at height {zd}Dd=1

are arranged in the K × 1 vector x:

x = As + n (8)

where s represents the backscattered power of the D scatterers
and n denotes a vector formed by scalar nk representing a circu-
lar Gaussian white noise. The A matrix, with dimension K×D,
contains the phase response due to the sensor geometry only. This
matrix is made up various vectors a(zd) representing the steering
vector, which corresponds to the d-th scatterer:

a(zd) = [eiφ1(zd)] · · · eiphiK(zd)]T (9)

with φk(zd) denoting the phase caused by the distance between
a scatterer at height zd and antenna k.

To focus such tomographic SAR data, the range of valid heights
is scanned using the steering vector a(z) of (9). The power, esti-
mated by the MUSIC method, is given by:

P̂M (z) =
1

a†(ÊN Ê†N )a
(10)

where ÊN represents the noise subspace obtained after an eigen-
decomposition of the observed covariance matrix, R̂ = ÊΛ̂Ê†.
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(a) The SPAN image is computed.

(b) Bright lines are detected by thresholding.

(c) Small segments are removed.

Figure 4: Extraction of bright lines corresponding to building cor-
ners.

The term pseudo-beamforming is employed here because P̂M (z)
is only usable to localize the target height but not to measure its
backscattering power.

Figure 5: Reflectivity reconstruction using SP-MUSIC-1 (1 scat-
terer assumed). Color corresponds to the height of the scatterers.
Note the presence of lot of artifacts, specially points located in
the “air”. Data are represented in a ground range geometry.

Fig. 5 shows the point cloud of our test site. We notice the pres-
ence of numerous artifacts that are due to low SNR, error in the
orbit location, etc. Despite these artifacts, it is possible to clearly
distinguish our 4 main objects: main building with roof structure,
meadows, secondary building as well as the fence.

4.2 Selection of points: the TomoSNI algorithm

Artifacts generated during tomographic processing using SP-MU-
SIC-1 are mainly due to the following factors:

• Low reflectivity, observed in the presence of roads, water,
shadowed areas.

• Wrong scatterer number assumption. Indeed, the SP-MUSIC-
1 will fail if we have mode than one scatterer per resolution
cell.

• Orbit path estimation. Phases have to be calibrated during
the processing. Errors will arise when focusing far from the
reference point.
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Figure 6: Top: Filtered SAR amplitude corresponding to the
main building (1). p1 and p2 are located in blue and red re-
spectively. Bottom: Pseudo-spectrum profile corresponding to
p2 and p1 illustrating the difference between a peak and back-
ground noise.

Fig. 6 shows the height profile of two points (p1 and p2) extracted
form the main building.

In order to detect and remove such artifacts, we propose a signal-
to-noise index (TomoSNI) (Guillaso et al., 2012) based on the
height profile observation:

TomoSNI(x, y) = median

(
P̂M (x, y)

max(P̂M (x, y))

)
(11)

where P̂M (x, y) is the pseudo-power over height given by (10).
We calculate the median value of each normalized pseudo-spectrum
and we select pixels where the TomoSNI < T is less than a
threshold T . The threshold is defined as follow:

T = median(TomoSNI) + MAD(TomoSNI) (12)

where MAD stands for median absolute deviation. Up to now,
this approach is only valid when one scatterer is present in the
resolution cell.

The proposed TomoSNI algorithm is illustrated in Fig. 7. The
amplitude of the peak in p2 is comparable to the noise level, while
the amplitude of the peak in p1 is clearly higher. Fig. 8 shows
the new point cloud distribution. Note that more than 95% of
artifacts have been removed.

4.3 Primitive extraction: the TomoSeed algorithm

In order to retrieve high level information of tomograms, it is
useful to group the points that belong to the same geometrical
primitive. In the case of buildings, it is reasonable to assume that
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Figure 7: Normalized pseudo-spectrum for p1 and p2. The red
line indicates the median value for each spectrum and the blue
line represents the threshold.

Figure 8: Reflectivity reconstruction after using the TomoSNI ap-
proach. Color corresponds to the height of the scatterers. Data are
represented in ground range geometry.

3D planes will be able to capture most of the present information.
Moreover, even in the case of a non-planar structure, it is always
possible to provide a piecewise planar approximation provided
the local curvature is not too high. Grouping the points according
to a parametric model is not only useful for detection, but it also
naturally reduces noise present in the elevations due to phase er-
rors and low coherence. Therefore, our method can also be used
for reconstruction.

The TomoSeed algorithm (D’Hondt et al., 2012) takes advantage
of the spatial connectivity of points in range/azimuth. In fact,
tomograms retrieved with the MUSIC approach provide a high
density of points. Many of those points are spatially connected in
the x−y plane.

Our algorithm is composed of two main steps. The first one is
called seed selection and collects all the samples contained in a
3D sphere of radius R around each point of the data set. For each
potential initial ”seed” patch, a 3D plane is fitted by mean square
minimization. The variance σ2 obtained from the residual gives
a measure of non-planarity, which is expected to be high if the
patch is located over several planes. Once all the neighborhoods
have been examined, the retained starting seed is the one that
correspond to the lowest σ2.

The second step called patch extraction progressively adds points
to the initial patch by examination of its spatial neighbors, in the
spirit of region growing. A point pi is accepted if the condition
d(zi,P(xi, yi)) < 3.5σ is satisfied, where d(, ) is the distance
between the point zi and the plane. Here, the model is a simple
plane described by the function P(x, y) = ax + by + c and the
elevation noise is assumed to be white Gaussian for the sake of
simplicity. However, the approach could be extended to other
models. As new points are added, the plane parameters and the
variance are updated. In practice, to keep a low computational
cost, these quantities are updated only if the area of the region
doubles.

initialize label: L := 0

• Seed selection:

• L := L+ 1, σmin :=∞
• for all remaining points pi:

– Pick samples lying in a sphere of radius R
around pi→ sample set St.

– Fit the plane P by least-squares fit on St and
compute the variance σ2

t .

– If σt < σmin then

∗ σmin := σt, Pbest := P, Sbest := St

• Patch extraction:

• PL := Pbest, SL := Sbest, σL := σmin

• Put the neighbours of SL according to d(.,PL) in a
priority queue Q

• while Q is not empty:

– remove first item pi

– mark pi as processed

– if d(zi,P(xi, yi)) < 3.5σL:

∗ add pi to SL
∗ put its unprocessed neighbours in Q
∗ update PL and σL

• Plane validation (see text).

• Remove SL from the data. Go to seed selection.

Figure 9: Our TomoSeed algorithm.

Once a structure has been identified, we add a refinement step
called plane validation: since at the beginning of the region grow-
ing the plane parameters and variance are only a rough estimate
due to the low number of samples, some points may be discarded
by the procedure even if they belong to the plane. Therefore,
plane validation consists of performing the growing once more
from the initial patch using the final parameter and variance esti-
mates obtained from the previous step.

Then, the points corresponding to the current plane are removed
from the data and the procedure is iterated until a stopping cri-
terion is reached. Pseudo-code for the TomoSeed algorithm is
given in Fig. 9.

Fig. 10 shows a 3D rendering of the original points and the re-
sults of labeling and de-noising produced by TomoSeed. It can be
noticed that the complex structure of the biggest building is well
extracted by the algorithm. However, it can also be observed that
many areas remain unlabeled due to the fact that they are not well
described by a locally planar patch. This segmentation provides
only a grouping of the points in terms of geometric structures and
does not allow for a detection of the buildings, since the ground
points can also be grouped into planar parts.

5 DISCUSSION

The previously introduced methods allow to extract features from
two different types of data that carry complementary informa-
tion. On the one hand, the tomographic point clouds provide
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(a) 3D rendering of the points retrieved from the tomogram

(b) Reconstructed 3D models by projecting the points on their re-
spective plane. Each color corresponds to a label.

Figure 10: Extraction of planes from tomographic height map.

geometric information that can be segmented and de-noised by
our TomoSNI/TomoSeed methods but does not allow to label the
retrieved segments. This means we cannot distinguish automati-
cally the ground from the buildings. On the other hand, thanks to
the PolSAR bilateral filter, it is possible to extract physics related
information such as randomness and type of scattering mecha-
nism as well as bright lines associated with buildings. Our study
also shows that in the case of this challenging dataset, the sole
use of polarimetric information seems not sufficient to the partial
localization of the buildings. This is due to two reasons: first,
due to the 45 degree orientation of the buildings, the H/α de-
composition describe these buildings with volume scattering as
they should be described by double bounce for the layover part
and pure surface for flat roofs. This is one of the limitations of
the polarimetric approach. The second reason is that the simple
line/roof model does not apply for all the buildings present in this
scene. In fact, the optical image shows that they have more com-
plex structures and the position of the bright lines does not allow
an accurate localization. Therefore, our study shows that for this
type of complex scene, other types of information should be ana-
lyzed. In particular, shape information should be included to help
the discrimination of the buildings from the ground. Moreover,
since man-made structures should result in a stronger interfero-
metric coherence that the rough surfaces of natural media, a po-
larimetric interferometric analysis could then be helpful to extract
optimized coherence and a physical classification should allow to
detect buildings with a higher confidence.

6 CONCLUSION

In this paper, we have studied the complementarity of polarimetry
and tomography in order to retrieve buildings from multi-channel
SAR data. We have presented some recently developed methods
that can be used to extract polarimetric and tomographic features
in order to feed a detection algorithm. The PolSAR bilateral fil-

ter allows a strong de-speckling of the image, allowing to apply
polarimetric decompositions and detect bright structures. The To-
moSNI and TomoSeed algorithms allow the detection of points of
interest from tomographic point clouds as well as their geomet-
ric grouping and de-noising. We have shown that although these
features contain a significant amount of information, they may
not be sufficient in the case of complex scenarios. Complexity of
building structures and ambiguity in the polarimetric parameters
show that more information should be extracted from the scene
in order to allow an automatic detection.
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