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ABSTRACT: 
 
The success of the object-based image analysis (OBIA) paradigm can be attributed to the fact that regions obtained by means of 
segmentation process are depicted with a variety of spectral, shape, texture and context characteristics. These representative objects-
attributes can be assigned to different land-cover/land-use types by means of two options. The first is to use supervised classifiers 
such as K-nearest neighbors (KNN) and Support Vector Machine (SVM), the second is to create classification rules. Supervised 
classifiers perform very well and have generally higher accuracies. However one of their drawbacks is that they provide no explicit 
knowledge in understandable and interpretable forms. The building of the rule set is generally based on the domain expert 
knowledge when dealing with a small number of classes and a small number of attributes, but having a dozens of continuously 
valued attributes attached to each image object makes it a tedious task and experts quickly get overwhelmed and become totally 
helpless. This is where data mining techniques for knowledge discovering help to understand the hidden relationships between 
classes and their attached attributes. The aim of this paper is to highlight the benefits of using knowledge discovery and data-mining 
tools, especially rule induction algorithms for useful and accurate information extraction from high spatial resolution remotely 
sensed imagery.  
 
 

                                                                 
∗ Corresponding author 

1. INTRODUCTION 

In the last decade, Object-based methods have been proved to 
be very useful to work with high spatial resolution remotely 
sensed data, by saving GIS technicians from digitizing hundreds 
of objects by hand. The object-based image analysis can be seen 
as a step toward decreasing the semantic gap between pixel-
based low-level spectral features and high-level semantic 
concepts in the images, and that by handling image primitives 
as objects instead of individual pixels. Objects are derived from 
input image by means of image segmentation, which is the 
process of partitioning images into segments by grouping 
neighboring pixels with similar spectral characteristics.  
The regions obtained by means of segmentation process can be 
depicted with a variety of spectral, shape, texture, context 
characteristics and neighborhood relations to other objects. 
These representative objects-attributes enable a later 
classification into object classes.  
Rule-based classification technique has been proved to be 
powerful tool, where it is implemented in most widely used 
remote sensing image classification software, such as 
eCognition and ENVI Feature Extraction. 
The aim of this paper is to highlight the benefits of using some 
available knowledge discovery and data-mining techniques, 
especially rule induction algorithms for useful and accurate 
information extraction from high spatial resolution remotely 
sensed imagery. The contribution of this paper is twofold. First, 
we present the results of many data mining algorithms, adapted 
to the classification of VHR image of an urban area. The second 
contribution lies in the using of the discovered classification 
rules to identify appropriate concepts, attributes and their 

domain values for the building of Ontology of urban objects, 
which models domain knowledge in a formal, machine 
understandable and sharable way. 

2. METHODS 

2.1 Image segmentation and Feature extraction 

The first step in OBIA is to generate segments from input image 
by means of image segmentation (Blaschke, 2010).  Up to now, 
a vast amount of methods and algorithms were developed 
especially for remotely sensed imagery or adopted from other 
fields. The ideal segmentation results should correspond to the 
real-world objects. However, the problem of splitting up the 
input image into too few (under-segmentation) or too many 
regions (over-segmentation) constantly occurs during the 
process; therefore, appropriate segmentation techniques need to 
be selected and carefully conducted. Based on the idea that not 
all real world objects occur at the same or a similar detail level, 
many studies reported that Multi-scale models are the most 
widely used for segmenting VHR images (Neubert and Herold, 
2008). Those methods make object extraction of various scales 
possible by generating segmentation results from finer to 
coarser segmentation by merging adjacent regions to different 
levels.   

The segmentation task in our research was performed in ENVI 
feature extraction. A Multi-scale edge-based segmentation 
algorithm introduced by (Xiaoying, 2007.) is implemented in 
this software tool. This method is very fast and only requires 
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one input parameter (scale level). Within the same software it is 
possible to compute 26 descriptors for each image segment, 14 
for shape, 4 spectral for each spectral band, 4 for texture and 4 
for color space and band ratio, respectively. These descriptors 
are Total area, Length of all boundaries, Compactness, 
Convexity, Solidity, Roundness, Factorform, Main Direction, 
Major Axis length, Minor Axis length, Number of holes, 
HOLES RATE, MINBAND_x (minimum value of the pixels 
comprising the region in band x),  MAXBAND_x, 
AVGBAND_x, STDBAND_x (standard deviation value of the 
pixels comprising the region in band x),  TX_RANGE (average 
data range of the pixels comprising the region inside the texture 
kernel), TX_MEAN, TX_VARIANCE, TX_ENTROPY, HUE , 
SATURATION, Intensity (ITT Visual Information Solutions. 
2007).  

2.2 Data Mining 

Knowledge discovery through data mining have known a great 
success during the past few years. Here, we are interested to 
discover classification rule for useful and accurate information 
extraction from high spatial resolution remotely sensed imagery. 
Thus a set of algorithms have been implemented and tested on 
the object obtained earlier.  

2.2.1 Genetic Algorithm (GA) 

GA is a global optimization technique, which can be used to 
generate high predictive and comprehensible classification rule. 
A survey of genetic algorithms for data mining and knowledge 
discovery can be found in (Freitas, A. A., 2003).  

In our case each solution encoded by the GA corresponds to 
optimized intervals of selected relevant attributes, linked with 
land-cover types for forming classification rules. These rules 
take the general following format:  

IF Atrribute1 ∈ Interval1 AND Atrribute2 ∈ Interval2 …IF 
Atrributej ∈ Intervalj THEN Object is Classi 

A single rule can be coded as one chromosome consisting of n 
genes, where each gene corresponds to a segment of 3 elements 
encoding an attribute or a condition in the condition part and n 
the total number of attributes. Each segment consists of a bi-
valued flag flagi, where value of 0 corresponds to the presence 
of the ith attribute in the rule and value of 1 to the absence of 
the attribute, and two continuous cutoff values, the lower bound 
Lbi and the Upper bound Ubi defining the rangeof ith attribute 
for the class being in process.  
For example the sequence (0.5,0.8,0 ,10.0,20.0,1 ,5.0,7.0,0 ,2.0, 
6.0) encodes the rule IF attr1 ∈ [0.5,0.8] AND attr3 ∈ [5.0,7.0] 
THEN Object is Classi 

Three (03) main genetic operators are used: selection, 
crossover, and mutation. The selection is a process in which the 
fittest rules have higher chance of being carried forward to the 
next generation. Crossover allows information to be exchanged, 
where the operator chooses a point to be selected on the parent 
solution sequences then information is swapped between the 
two individuals, rendering two child solutions. Mutation is used 
to randomly choose a member of the population and to change 
one randomly chosen element in its sequence representation. 
After the processes of selection, crossover, and mutation have 
been applied to the initial population, a new population will 

have formed following the replacement step. After replacement, 
the new population will be evaluated based on its fitness in the 
next evolution. This process of selection, crossover, mutation, 
and replacement is continued until a fixed number of 
generations have been reached or some form of convergence 
criterion has been met.  

A central instrument in a genetic algorithm is the fitness 
function. Ideally the discovered rules should satisfy two criteria: 
predictive accuracy and comprehensibility, so these objectives 
are combined into a single objective fitness function. 

Let a rule be of the form: IF A THEN C, where A is the 
antecedent (a conjunction of conditions) and C is the 
consequent (predicted class). The class predicted for an example 
is C if and only if the example satisfies the rule antecedent. The 
predictive performance of a rule can be summarized by four 
(04) cases, sometimes called a confusion matrix (Freitas, A. A., 
2003).  

• True Positives (TP): Number of examples satisfying A 
and C 

• False Positives (FP): Number of examples satisfying 
A but not C 

• False Negatives (FN): Number of examples not 
satisfying A but satisfying C 

• True Negatives (TN): Number of examples not 
satisfying A nor C 

A  very  simple  way  to  measure  the  predictive  accuracy  of  
a  rule  is  to compute the confidence factor (CF) of the rule, 
defined as: 

CF = TP / (TP + FP)  (1) 

It is possible to measure the predictive accuracy of a rule by 
taking into account not only its CF but also a measure of how 
“complete” the rule. The rule completeness (comp) measure, 
denoted Comp, is computed by the formula  

Comp = TP / (TP + FN) (2) 

In order to combine the CF and Comp measures we can define a 
fitness function such as: 

Fitness = CF * Comp (3) 

This fitness function does not evaluate the comprehensibility of 
the rule. A simple measure of comprehensibility is the 
Simplicity (simp), which in general, its value is inversely 
proportional to the number of conditions in the rule antecedent. 

If a rule has at most L condition, the comprehensibility of the 
rule R can be defined as: 

Simp = L-h / L-1 (4) 

Where h is the length of the rule R and simp is normalized to 
take on values in the range 0..1. 
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Finally, the fitness function used by our system is defined as: 

Fitness = CF * Comp*Simp  (5) 

2.2.2 Genetic Programming (GP) for Symbolic 
Classification 

The goal of GP, as its name implies, is the evolution of 
computer programs or mathematical expressions instead of 
sequence of values as for GA (Espejo et al., 2010). GP 
individuals are usually seen as trees, where leaves correspond to 
terminal symbols (variables and constants) and internal nodes 
correspond to non-terminals (operators and functions). The set 
of all the non-terminal symbols allowed is called the function 
set, whereas the terminal symbols allowed constitute the 
terminal set. An example of tree that represents the expression 
for calculating normalized difference vegetation index is 
illustrated in the figure 1. In our case the terminal symbols are 
the attributes of objects and the internals nodes are 
mathematical operators such as summation, subtraction, 
multiplication and division.  

 

Figure 1. Normalized difference vegetation index as a genetic 
programming tree solution 

Similar to the GA, the GP has parameters and operators such as 
selection, crossover and mutation, these operators are adapted 
to work with the tree structure. In addition it has its own 
parameters such maximum tree depth and size. 

Usually a single output value is computed from the operation 
performed on the values of the attributes based on the 
expression evolved by the GP. The value computed by the 
function indicates the class predicted. For binary classification 
problems; if the output value is greater than a given threshold, 
the example is assigned to a certain class, otherwise it is 
assigned to the other one. The most used fitness function in 
genetic programming is the root mean squared errors between 
the output values and the desired output of the solution. In our 
case we used two fitness functions, which permit obtaining well 
separated groups; the first is based on the using of accuracy of 
the k-means unsupervised clustering technique. The second is 
based on the using of the M-statistic.  

The M-statistic measures the separability between two classes c1 
and c2, which are the class of objects of interest and the 
background (the remaining objects). It can be calculated by 
normalizing the difference between the means of two classes 
µc1– µc2 by the sum of their standard deviations σc1 + σc2. 
According to (Kaufman and Remer, 1994) a value of M<1 
denotes that the histograms significantly overlap and the ability 
to discriminate the two classes is poor (figure 3). A value of 
M>1 denotes that the histogram means are well separated and 
that the two regions are relatively easy to discriminate. 

 

Figure 3. Illustration of the m-statistc group separability 
measure 

2.2.3 Genetic Programming for Rule Induction 

Another utilization of genetic programming is the classification 
rule induction, where instead of evolving mathematical 
expressions as mentioned previously. GP manipulates IF-THEN 
classification rules that contain sets of comparators like >, <, 
IN, and logical operators like AND, OR, NOT. Many 
algorithms of this kind have been proposed during the last 
decades. A good survey on the application of genetic 
programming to classification can be found in (Espejo et al., 
2010). In this study we used two algorithms: Discovering 
interesting classification rules with genetic programming (De 
Falco et al., 2002) and constrained-syntax genetic programming 
system for discovering classification rules (Bojarczuk, et al., 
2004). 

2.2.4 Fuzzy Unordered Rule Induction Algorithm  

FURIA is a fuzzy rule-based classification method, which is 
builds upon the state-of-the-art rule learner algorithm RIPPER. 

The sharp boundaries of a crisp rule are replaced by soft 
boundaries through replacing crisp intervals by fuzzy intervals 
with trapezoidal membership function (Hühn and Hüllermeier, 
2009). A fuzzy interval of that kind is specified by four 

parameters and will be written  

 

Where ϕ,L, and ϕ,U, are the lower and upper bound of the 
membership of the fuzzy sets. A fuzzy rule is uniquely 
characterized by its core [ϕc,L

, ϕ
c,U] and its support [ϕs,L

, ϕ
s,U]. It 

is valid inside the core and invalid outside the support; in-
between, the validity drops in a gradual way (Figure 3). 

Consider, for example, the rule A<= 5|+, which indicates that if 
attribute A is smaller or equal to 5, then the class is positive. 
Here, the rule is valid for A <= 5 and invalid for A > 5. 
Similarly, a fuzzy rule A ∈ ( -∞;  -∞; 5; 8)|+ suggests that the 
rule is completely valid for A <= 5, in valid for A > 8, and 
partially valid in-between (Hühn and Hüllermeier, 2009). 

For details about the FURIA algorithm, reader can refer to 
(Hühn and Hüllermeier, 2009). 
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Figure 3. Crisp boundaries vs. Fuzzy boundaries 

In contrast to the previously cited algorithms, which generate 
crisp rules, the FURIA algorithm was applied to the objects 
dataset to discover fuzzy rules.  

3. EXPERIMENTS AND RESULTS 

In our experiments, a subset of multi-spectral pansharpened 
Quickbird image of Oran city, Algeria, is used as the case study 
image. The image has a ground resolution of 0.6 m and four 
(04) spectral bands with pixels coded on 11bits. 

Firstly, the multi-spectral image is segmented and features are 
extracted. In this study, numerous combinations of different 
parameters values were used to yield segmented images, this 
latter were then checked visually to find the best values for 
scale level and merge level. Finally the multi-scale 
segmentation was performed using 30.0 as value for scale 
parameter and 90.0 for merging threshold, then 38 spectral, 
texture, spatial, ratio, and color space attributes were computed 
for each segmented region. Since the selection of training 
objects influences heavily the quality of the discovered rules.  A 
set of regions of each class were collected and labeled on the 
basis of field investigation and photo-interpretation. The sample 
set contains mainly the following classes: buildings, roads, bare 
soil, trees and grass. These samples are divided to training and 
test sets. The file containing regions of interest is a XML-based 
file that was exported later to CSV (comma separated vector) 
file for further data mining experiments. The training set was 
used to train different classifiers including genetic algorithm, 
genetic programming symbolic classification, GP-based 
classification rule induction (Falco and Bojarczuk algorithms) 
and Finally the FURIA fuzzy classifier. The test set is applied to 
evaluate the generalization capability of the final rule set on a 
separate set containing data examples that not seen during 
training step.     

For the following case studies, we used 500 individuals, 100 
generations, and a crossover rate of 90% and a mutation rate of 
5% for all the evolutionary algorithms. 

Four (04) experiments have been conducted: 

1. Extracting vegetation objects. The best extraction 
rule, the mathematical expression generated by the GP 
and the rate of correctly classified objects in the test 
dataset (correctness) are shown in the table 1. 

2. Separating tree objects from grass ones. Different 
results are shown in the table 2. 

3. Extracting of built-up areas (buildings and roads. 
Different results are shown in the table 3. 

4. Separating of building objects from roads. Different 
results are shown in the table 4. 

The above experiments have been done according to the 
hierarchy of figure 4. 

 
 

Figure 4. Hierarchy used for the classification of different 
objects 
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BANDRATIO > 0,2473 98.52% 

FURIA 
BANDRATIO IN [0.222, 0.223, 

+∞, +∞] 
98.52% 

 

Table 1. Extraction of vegetation results  

From the above table, it easy to notice that all classifiers have 
found the simplest rule to extract vegetation objects, which is 
based on the thresholding of the normalized difference 
vegetation index (BANDRATIO), except for the GP-based 
symbolic classification, where we used only the values of 
spectral means. The accuracies for the mathematical expressions 
obtained by the GP are calculated on the test dataset after 
clustering the output by the k-means algorithm. 

The high values of correctly classified instances indicate that 
separation of vegetation from background is an easy task for all 
tested classifiers. Even in the case where the bandratio attribute 
is not available, the GP succeeded in finding simple and easy to 
memorize formulas for separating between vegetation and non-
vegetation segments.   

Finding the most adequate attributes and their associated 
thresholds to extract a particular land-cover type as vegetation 
can help experts in establishing useful knowledge models 
(ontologies). 

1 

2 3 

4 

ϕc,L ϕc,U 

ϕs,L ϕs,U 
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182.698]) AND (MINBAND_1  

IN [138, 139, +∞, +∞] 
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Table 2. Results of separating tree objects from grass ones  

From the table 2. We can conclude that almost algorithms have 
added new attributes to the rules; among them are texture 
parameters such TX_MEAN, TX_RANGE and 
TX_ENTROPY. The obtained rule sets agree with the 
assumption of domain experts, since trees are considered 
usually as textured objects. None of the used classifiers added 
spatial attributes to the rules, which means that this kind of 
attributes is not useful in this case. 
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AND (TX_VARIANCE in [257.973, 
259.442, +∞,+∞]) 

93.67% 

 

Table 3. Results of extraction of built-up objects 

As it was expected different classifiers have used spectral, 
bandratio and texture attributes to separate the built-up areas 

from the remaining objects. The obtained accuracies are 
acceptable, especially for the GP-based symbolic classification 
and the FURIA fuzzy classifier. 
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(MAXBAND_1 in [284, 286, +∞, +∞] 

91.23 % 

 

Table 4. Results of separating buildings from roads.  

From the table 4. It is obvious that classifiers have succeeded in 
finding a good way to discriminate between building objects 
and road objects and that by using the spatial attribute 
compactness (COMPACT). The best accuracies were obtained 
by the FURIA algorithm and the FALCO GP-based rule 
induction. Since the symbolic classification does not use spatial 
attributes, their accuracies are not as good as the other 
classifiers.    
 

4. CONCLUSION 

Improving classification of very high spatial resolution imagery 
has become a hot topic in the remote sensing image processing. 
One of the most innovative classification approach appeared in 
the era of high resolution earth observation is the object based 
image classification. This paper has presented a set of data 
mining techniques to discover classification rules from object-
based segmentations. Genetic algorithms and genetic 
programming are known as flexible and robust algorithms, often 
capable of solving wide range of optimization problems. 
Classification rules can be constructed with GA through 
optimizing intervals of relevant attributes in the object-based 
space linked with land cover types. Mathematical expressions 
can be coded as trees and then evolved by GP, which maximize 
fitness functions as accuracies or classes separability measures. 
The exploiting of fuzzy rules through the using of algorithms as 
FURIA is another promising way since it mimics the human 
behavior in fuzzy situations. These algorithms have been 
applied to the extraction of classification rules from VHR sub-
image of Oran Town (Algeria). The algorithms succeeded in 
finding comprehensible rules that agree with the domain expert 
knowledge. Those rules were for the extraction of vegetation 
areas, the differentiation between grass and trees regions and 
the distinguishing between roads and buildings. It has been 
found that the proposed algorithms have comparable accuracies 
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over all experiments, in addition, they provided easy to realize 
and comprehensible rule set, which can help experts in 
establishing useful knowledge models.  
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