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ABSTRACT:

The success of the object-based image analysisA)O@dradigm can be attributed to the fact thataegiobtained by means of
segmentation process are depicted with a variegpettral, shape, texture and context charactmisthese representative objects-
attributes can be assigned to different land-ctamu/use types by means of two options. The fagdbiuse supervised classifiers

such as K-nearest neighbors (KNN) and Support VYedachine (SVM), the second is to create clasdificarules. Supervised
classifiers perform very well and have generallyhleir accuracies. However one of their drawbackiatthey provide no explicit
knowledge in understandable and interpretable forfire building of the rule set is generally basedtbe domain expert
knowledge when dealing with a small number of @asand a small number of attributes, but havingzeds of continuously
valued attributes attached to each image objecemika tedious task and experts quickly get ovelmbd and become totally
helpless. This is where data mining techniqueskfaowledge discovering help to understand the hidddationships between
classes and their attached attributes. The aimisftaper is to highlight the benefits of using Wiexige discovery and data-mining
tools, especially rule induction algorithms for fuseand accurate information extraction from highasal resolution remotely

sensed imagery.

1. INTRODUCTION

In the last decade, Object-based methods have firesed to
be very useful to work with high spatial resoluticemotely
sensed data, by saving GIS technicians from diggihundreds
of objects by hand. The object-based image anatgside seen
as a step toward decreasing the semantic gap betpigel-
based low-level spectral features and high-levainaseic
concepts in the images, and that by handling inpageitives
as objects instead of individual pixels. Objeces @erived from
input image by means of image segmentation, whichhe
process of partitioning images into segments byugiryg
neighboring pixels with similar spectral charactgcs.

The regions obtained by means of segmentation gsocan be
depicted with a variety of spectral, shape, texturentext
characteristics and neighborhood relations to otbigjects.
These representative objects-attributes enable &er la
classification into object classes.

Rule-based classification technique has been praeede
powerful tool, where it is implemented in most wideised
remote sensing image classification software, suah
eCognition and ENVI Feature Extraction.

The aim of this paper is to highlight the benefifaising some
available knowledge discovery and data-mining téphes,
especially rule induction algorithms for useful amdcurate
information extraction from high spatial resolutisemotely
sensed imagery. The contribution of this papewifdld. First,
we present the results of many data mining algmsthadapted
to the classification of VHR image of an urban afidze second
contribution lies in the using of the discoveredssification
rules to identify appropriate concepts, attributesd their
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domain values for the building of Ontology of urbabjects,
which models domain knowledge in a formal,
understandable and sharable way.

2. METHODS
2.1 Image segmentation and Feature extraction

The first step in OBIA is to generate segments fioput image
by means of image segmentation (Blaschke, 201@) tolhow,
a vast amount of methods and algorithms were dpeelo
especially for remotely sensed imagery or adopteth fother
fields. The ideal segmentation results should spoad to the
real-world objects. However, the problem of spidgtiup the
input image into too few (under-segmentation) oo toany
regions (over-segmentation) constantly occurs durite
process; therefore, appropriate segmentation tquksineed to
be selected and carefully conducted. Based ondiee that not
all real world objects occur at the same or a sintetail level,
many studies reported that Multi-scale models & rmost
widely used for segmenting VHR images (Neubert Hecbld,
2008). Those methods make object extraction obuarscales
possible by generating segmentation results fronerfito
coarser segmentation by merging adjacent regiordiffierent
levels.

The segmentation task in our research was perfoim&iNVI
feature extraction. A Multi-scale edge-based segatiem
algorithm introduced by (Xiaoying, 2007.) is implented in
this software tool. This method is very fast andyaequires
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one input parameter (scale level). Within the saofewvare it is
possible to compute 26 descriptors for each imagenent, 14
for shape, 4 spectral for each spectral band, 4efdure and 4
for color space and band ratio, respectively. TriEseriptors
are Total area, Length of all boundaries, Compasine
Convexity, Solidity, Roundness, Factorform, Mainrdation,
Major Axis length, Minor Axis length, Number of ted,
HOLES RATE, MINBAND_x (minimum value of the pixels
comprising the region in band x), MAXBAND_x,
AVGBAND_x, STDBAND_x (standard deviation value dfet
pixels comprising the region in band x), TX_RANGerage
data range of the pixels comprising the regiondi@she texture
kernel), TX_MEAN, TX_VARIANCE, TX_ENTROPY, HUE ,
SATURATION, Intensity (ITT Visual Information Solians.
2007).

2.2 DataMining

Knowledge discovery through data mining have knangreat
success during the past few years. Here, we aegesied to
discover classification rule for useful and accer@iformation
extraction from high spatial resolution remotelpsed imagery.
Thus a set of algorithms have been implementedtestdd on
the object obtained earlier.

221 Genetic Algorithm (GA)

GA is a global optimization technique, which can used to
generate high predictive and comprehensible claasin rule.
A survey of genetic algorithms for data mining dmmbwledge
discovery can be found in (Freitas, A. A., 2003).

In our case each solution encoded by the GA cooredp to
optimized intervals of selected relevant attribufesked with
land-cover types for forming classification rul&hese rules
take the general following format:

IF Atrribute, O Interval, AND Atrribute, O Interva, ...IF
Atrribute O Interva) THEN Object is Class

A single rule can be coded as one chromosome ¢Szt n
genes, where each gene corresponds to a segngmerhents
encoding an attribute or a condition in the cowditpart and n
the total number of attributes. Each segment ctmsika bi-
valued flag flagi, where value of 0 correspondshi® presence
of the ith attribute in the rule and value of 1the absence of
the attribute, and two continuous cutoff values, Idwer bound
Lbi and the Upper bound Ubi defining the rangebfattribute
for the class being in process.

For example the sequence (0.5,0.8,0,10.0,20.M{,6,0 ,2.0,
6.0) encodes the rule IF atfdl [0.5,0.8] AND attg 0 [5.0,7.0]
THEN Object is Class

Three (03) main genetic operators are used: sefecti
crossover, and mutation. The selection is a processich the
fittest rules have higher chance of being carrmsvard to the
next generation. Crossover allows information teekehanged,
where the operator chooses a point to be selectebdeoparent
solution sequences then information is swapped dmiwthe
two individuals, rendering two child solutions. Mtion is used
to randomly choose a member of the population anchange
one randomly chosen element in its sequence reyetsm.
After the processes of selection, crossover, anthtion have
been applied to the initial population, a new pagioh will
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have formed following the replacement step. Afeglacement,
the new population will be evaluated based onitite$s in the
next evolution. This process of selection, crosgormutation,
and replacement is continued until a fixed numbédr
generations have been reached or some form of opevee
criterion has been met.

A central instrument in a genetic algorithm is tfimess
function. Ideally the discovered rules should $atiwo criteria:
predictive accuracy and comprehensibility, so thasgectives
are combined into a single objective fitness fuortti

Let a rule be of the form: IF A THEN C, where A tise
antecedent (a conjunction of conditions) and C le t
consequent (predicted class). The class predioteahf example
is C if and only if the example satisfies the ratéecedent. The
predictive performance of a rule can be summarizgdour
(04) cases, sometimes called a confusion matrigitds, A. A.,
2003).

e True Positives (TP): Number of examples satisfying
and C

* False Positives (FP): Number of examples satisfying

A but not C
e False Negatives (FN): Number of examples not
satisfying A but satisfying C
e True Negatives (TN): Number of examples not
satisfying A nor C

A very simple way to measure the predictaecuracy of
a rule is to compute the confidence factor (6F}he rule,
defined as:

CF=TP /(TP +FP) @)

It is possible to measure the predictive accurdcg oule by
taking into account not only its CF but also a meaf how
“complete” the rule. The rule completeness (com@Easure,
denoted Comp, is computed by the formula

Comp =TP /(TP + FN) (2)
In order to combine the CF and Comp measures weefime a
fitness function such as:

Fitness = CF * Comp ?3)
This fitness function does not evaluate the congmstiility of
the rule. A simple measure of comprehensibility trse
Simplicity (simp), which in general, its value isversely
proportional to the number of conditions in theerahtecedent.

If a rule has at most L condition, the comprehditisitof the

rule R can be defined as:

Simp =L-h/L-1 4)

Where h is the length of the rule R and simp iswadized to
take on values in the range 0..1.
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Finally, the fitness function used by our systemefined as:

Fitness = CF * Comp*Simp (5)

2.2.2 Genetic
Classification

Programming (GP) for  Symbolic

The goal of GP, as its name implies, is the evotutdf
computer programs or mathematical expressions adsief
sequence of values as for GA (Espejo et al.,, 20GH.
individuals are usually seen as trees, where leaweespond to
terminal symbols (variables and constants) andrnatenodes
correspond to non-terminals (operators and funsjionhe set
of all the non-terminal symbols allowed is callé function
set, whereas the terminal symbols allowed conestittite
terminal set. An example of tree that represergsetkpression
for calculating normalized difference vegetationder is
illustrated in the figure 1. In our case the terahisymbols are

mote Sensing and Spatial Information Sciences,
2013, 21 — 24 May 2013, Hannover, Germany
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Figure 3. lllustration of the m-statistc group seyélity
measure

2.2.3  Genetic Programming for Rule Induction

Another utilization of genetic programming is tHassification
rule induction, where instead of evolving mathenwti
expressions as mentioned previously. GP manipulBtd$EN

classification rules that contain sets of compasatike >, <,

the attributes of objects and the internals nodee a N, and logical operators like AND, OR, NOT. Many
mathematical operators such as summation, sulmmacti algorithms of this kind have been proposed during last

multiplication and division.

2

Figure 1. Normalized difference vegetation indexa&gnetic
programming tree solution

Similar to the GA, the GP has parameters and oparatich as
selection, crossover and mutation, these operat@sadapted
to work with the tree structure. In addition it hds own
parameters such maximum tree depth and size.

Usually a single output value is computed from tperation
performed on the values of the attributes based thom
expression evolved by the GP. The value computedhby
function indicates the class predicted. For bindagsification
problems; if the output value is greater than a@githreshold,
the example is assigned to a certain class, otheniti is

assigned to the other one. The most used fitnasstifun in

genetic programming is the root mean squared ebetseen
the output values and the desired output of thetisol. In our
case we used two fitness functions, which permiioing well

separated groups; the first is based on the udiegauracy of
the k-means unsupervised clustering technique. sEeend is
based on the using of the M-statistic.

The M-statistic measures the separability betweenctassesc
and ¢, which are the class of objects of interest and t
background (the remaining objects). It can be dated by
normalizing the difference between the means of tlesses
Ke— Hez by the sum of their standard deviatiosg + oco.
According to (Kaufman and Remer, 1994) a value oflM
denotes that the histograms significantly overlag te ability
to discriminate the two classes is poor (figure B)value of
M>1 denotes that the histogram means are well aggghrand
that the two regions are relatively easy to disitrate.

decades. A good survey on the application of geneti
programming to classification can be found in (Espet al.,
2010). In this study we used two algorithms: Disrinvg
interesting classification rules with genetic pamgming (De
Falco et al., 2002) and constrained-syntax gempetigramming
system for discovering classification rules (Borulc et al.,
2004).
2.24  Fuzzy Unordered Rulelnduction Algorithm

FURIA is a fuzzy rule-based classification methadich is
builds upon the state-of-the-art rule learner atgor RIPPER.

The sharp boundaries of a crisp rule are replacedsdit
boundaries through replacing crisp intervals byzjuintervals
with trapezoidal membership function (Huhn and Eitieier,
2009). A fuzzy interval of that kind is specifiedy dour

. . - x.L - L LN F A
parameters and will be writte/” = (970797, ¢"7):

Lo it ¢ol <v< oY

R B
W: if ¢°" <v < o™
0, otherwise

Where ¢*, and ¢V, are the lower and upper bound of the
membership of the fuzzy sets. A fuzzy rule is ueigu
characterized by its corgT ¢°Y] and its supportf®- ¢°"]. It

is valid inside the core and invalid outside thepart; in-
between, the validity drops in a gradual way (Fég8y).

h Consider, for example, the rule A<= 5|+, which oades that if
attribute A is smaller or equal to 5, then the las positive.
Here, the rule is valid for A <= 5 and invalid fér > 5.
Similarly, a fuzzy rule AO ( -0; -0; 5; 8)[+ suggests that the
rule is completely valid for A <= 5, in valid for 4 8, and
partially valid in-between (Huhn and Hillermeie®0®).

For details about the FURIA algorithm, reader cafen to
(Hihn and Hullermeier, 2009).
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The above experiments have been done accordinghdo t

c,U
¢t ¢ hierarchy of figure 4.
1+ / Cihject
Fuzzy __,-’/ \\._‘ / \
L 7 Crisp <U 1
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Figure 3. Crisp boundaries vs. Fuzzy boundaries Trees Cirass ||| Built-up Other chsjests
. . . . | PN
In contrast to the previously cited algorithms, efhigenerate
crisp rules, the FURIA algorithm was applied to thigiects 4 - S
dataset to discover fuzzy rules. Building Foad
3. EXPERIMENTSAND RESULTS . . e
Figure 4. Hierarchy used for the classificatiordifferent
In our experiments, a subset of multi-spectral pargened objects
Quickbird image of Oran city, Algeria, is used ks tase study —
image. The image has a ground resolution of 0.6nch faur Clasdfiers Rules Correctness
(04) spectral bands with pixels coded on 11bits. GA BANDRATIO IN [ 0.320, 0.554 ] 98.82%
2
Firstly, the multi-spectral image is segmented &atures are c -% Mean(B3)/ Mean(B4) + Mean(B3)/|  ga 514,
extracted. In this study, numerous combinationsdifferent o8| 3 2*Mean(B2) o
parameters values were used to yield segmentedesnalyis s 8| =
latter were then checked visually to find the besiues for o E’@ ”
scale level and merge level. Finally the multi-scal | € aG & .
segmentation was performed using 30.0 as valueséate = £ | Mean(B3)+ Mean(B1)- Mean(B4)|  98.73%
parameter and 90.0 for merging threshold, then [3&tsal, 5 x
texture, spatial, ratio, and color space attributese computed s o
for each segmented region. Since the selectionraifing -% - = BANDRATIO > 0.255 98.52%
objects influences heavily the quality of the disa@d rules. A o) % uw
set of regions of each class were collected andlédbon the o 2 N
basis of field investigation and photo-interpretatiThe sample E 2
set contains mainly the following classes: buildingads, bare = % BANDRATIO > 0,2473 98.52%
soil, trees and grass. These samples are dividaditong and @ )
test sets. The file containing regions of intefest XML-based
file that was exported later to CSV (comma sepadratector) BANDRATIO IN [0.222, 0.223, .
file for further data mining experiments. The tiam set was FURIA oo, +ao] 98.52%

used to train different classifiers including geémetlgorithm,
genetic programming symbolic classification, GPeohs
classification rule induction (Falco and Bojarczaigorithms)
and Finally the FURIA fuzzy classifier. The test iseapplied to
evaluate the generalization capability of the finde set on a
separate set containing data examples that not daeng
training step.

For the following case studies, we used 500 indigid, 100
generations, and a crossover rate of 90% and dipwtate of
5% for all the evolutionary algorithms.

Four (04) experiments have been conducted:

Table 1. Extraction of vegetation results

From the above table, it easy to notice that a@bglfiers have
found the simplest rule to extract vegetation disjewhich is
based on the thresholding of the normalized diffeee
vegetation index (BANDRATIO), except for the GP-bds
symbolic classification, where we used only theueal of
spectral means. The accuracies for the mathematipagssions
obtained by the GP are calculated on the test elater
clustering the output by the k-means algorithm.

The high values of correctly classified instancedidate that

Extracting vegetation objects. The best extractionSeparation of vegetation from background is an ézsly for all

tested classifiers. Even in the case where therbtiadattribute
is not available, the GP succeeded in finding sénapld easy to
memorize formulas for separating between vegetatith non-

Finding the most adequate attributes and their ciessnl
thresholds to extract a particular land-cover tgpevegetation
can help experts in establishing useful knowledgedets

1.
rule, the mathematical expression generated b&he
and the rate of correctly classified objects in tbs&t
dataset (correctness) are shown in the table 1. :
2. Separating tree objects from grass ones. Differenyegetation segments.
results are shown in the table 2.
3. Extracting of built-up areas (buildings and roads.
Different results are shown in the table 3.
4. Separating of building objects from roads. Diffaren

results are shown in the table 4.

90
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Classifiers Rules Correctness
c (8]
§ |8
'% g AVGBAND_2 - AVGBAND_1 -
© © TX_ENTROPY - AVGBAND_1 + 87.0%
=) TX_MEAN* TX_ENTROPY
2 s
o O
c (&)
£ 3 J AVGBAND_1/[ (AVGBAND_2-
% -g . € AVGBAND_1)+ (AVGBAND_2- 87 0%
® & i & TX_MEAN+ TX_RANGE)] I
(=) g
o
a
L2
T 8 .
= c 3 AVGBAND_3 > 203,45 80.37%
o S |
3]
=}
he]
c X
= =]
2|y
03: B AVGBAND_2 > 269,928027 75.70 %
=)
m
AVGBAND_2 IN [-0, -0, 261.63,
267.83] AND TX_RANGE
IN[26.5982, 26.7438p, o]) 0
FURIA TX_MEAN IN [-o0, -0, 180.874, 89.71 %
182.698]) AND (MINBAND_1
IN [138, 139, o, +o0]

Table 2. Results of separating tree objects fraamsgones

From the table 2. We can conclude that almost dlgos have
added new attributes to the rules; among them exeure
parameters such TX_MEAN, TX_RANGE
TX_ENTROPY. The obtained
assumption of domain experts, since trees are deres
usually as textured objects. None of the used iflmssadded
spatial attributes to the rules, which means th& kind of
attributes is not useful in this case.

Classifiers Rules Correctness

AVGBAND_3/2* AVGBAND_1"4 87.13%

M-Statistic

3*AVGBAND_2- AVGBAND_3-

AVGBAND_4 90.08%

Symbolic Classification

K-means

NOT (TX_RANGE <= 34,94

0
AND MAXBAND_2 <= 665,157 ) 78.48%

Genetic programming
Falco

MAXBAND_1> 320,74 AND
AVGBAND_1 > 234,39

Ruleinduction

82.27%

Bojarczuk

BANDRATIO IN[- 0,00, 0.074743,
0.083673])
AND (AVGBAND_1 in [240.166,
241.083, o, +o0])
AND (TX_VARIANCE in [257.973,
250.442, 40, +od])

FURIA 93.67%

Table 3. Results of extraction of built-up objects

As it was expected different classifiers have useéctral,
bandratio and texture attributes to separate thk-uqp areas

and
rule sets agree with the
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from the remaining objects. The obtained accuraces
acceptable, especially for the GP-based symbaddissdication
and the FURIA fuzzy classifier.

Classfiers Rules Correctness
i)
1]
— A\ *
5| % AVGBAND_272/ (AVGBAND_1 63.91%
S| o (AVGBAND_1+ AVGBAND_4))
§| s
(8}
2 % %)
ERE: § (AVGBAND_4+AVGBAND_3)/
E gl e (AVGBAND_2- AVGBAND_1) 80.92%
53 NV
a
o
B
g o) COMPACT > 0,147
| B AND 88.14 %
2| uw MINBAND_1 > 184,127
S
he]
c X
| R
21 8 AVGBAND_1 > 299,54 AND
=} et ! 0,
x| 8 COMPACT > 0,179737 84.53%
O
m
COMPACT in [0.167, 0.168, o, +w]) and o
FURIA (MAXBAND_1 in [284, 286, o, +] 91.23 %

Table 4. Results of separating buildings from roads

From the table 4. It is obvious that classifiersehaucceeded in
finding a good way to discriminate between buildioigjects

and road objects and that by using the spatialibate

compactness (COMPACT). The best accuracies wersinsat

by the FURIA algorithm and the FALCO GP-based rule
induction. Since the symbolic classification does use spatial
attributes, their accuracies are not as good as dther
classifiers.

4. CONCLUSION

Improving classification of very high spatial resbn imagery
has become a hot topic in the remote sensing ipegEEssing.
One of the most innovative classification approappeared in
the era of high resolution earth observation isdbgect based
image classification. This paper has presentedtaofelata
mining techniques to discover classification rufiesn object-
based segmentations. Genetic algorithms
programming are known as flexible and robust athaors, often
capable of solving wide range of optimization peshs.
Classification rules can be constructed with GAotigh
optimizing intervals of relevant attributes in tbbject-based
space linked with land cover types. Mathematicgiressions
can be coded as trees and then evolved by GP, wiagimize
fitness functions as accuracies or classes sefigrabeasures.
The exploiting of fuzzy rules through the usingatforithms as
FURIA is another promising way since it mimics theman
behavior in fuzzy situations. These algorithms hdwaen
applied to the extraction of classification rulesnfi VHR sub-
image of Oran Town (Algeria). The algorithms sucEzk in
finding comprehensible rules that agree with thedio expert
knowledge. Those rules were for the extraction efetation
areas, the differentiation between grass and tregiens and
the distinguishing between roads and buildingshds been
found that the proposed algorithms have comparatdaracies

and genetic
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over all experiments, in addition, they providedyeto realize
and comprehensible rule set, which can help expérts
establishing useful knowledge models.
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