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ABSTRACT:

The acquisition of detailed information for buildings and their components becomes more and more important. However, an automatic
reconstruction needs high-resolution measurements. Such features can be derived from images or 3D laserscans that are e.g. taken by
unmanned aerial vehicles (UAV). Since this data is not always available or not measurable at the first for example due to occlusions we
developed a reasoning approach that is based on sparse observations. It benefits from an extensive prior knowledge of probability den-
sity distributions and functional dependencies and allows for the incorporation of further structural characteristics such as symmetries.
Bayesian networks are used to determine posterior beliefs. Stochastic reasoning is complex since the problem is characterized by a
mixture of discrete and continuous parameters that are in turn correlated by nonlinear constraints. To cope with this kind of complexity,
the implemented reasoner combines statistical methods with constraint propagation. It generates a limited number of hypotheses in a
model-based top-down approach. It predicts substructures in building facades - such as windows - that can be used for specific UAV
navigations for further measurements.

1 INTRODUCTION

The detailed reconstruction of buildings becomes more and more
important. In many critical situations building models that are
only enhanced by textures are not sufficient. Semantics such
as the attribution of a window or door are important for many
scenarios, such as rescue operations or the calculation of energy
balances. The standardized data model CityGML (Gröger et al.,
2008) allows for representing building components (such as win-
dows or doors) in different level of details (LOD) that however
up to now have mainly been modeled manually.

With the ability to collect data by unmanned aerial vehicles (UAVs)
data sets of measurements become easily available. Most ap-
proaches for an automatic reconstruction of buildings rely on
high-resolution measurements - such as 3D point clouds from
laserscans, or features extracted from images. However, on the
one hand, observations of all building facades are not alwayas
available at first. Occlusions or missing data avoid to build a
comprehensive model. On the other hand, it is desirable that the
interpretation of data acquisited by an UAV is performed in real-
time in order to control further recordings. With huge amounts
of data that have to be analyzed this requirement is difficult to
satisfy with common approaches of building reconstruction.

To this end, we developed a reasoning method that predicts un-
known substructures in buildings based on sparse observations.
Hereby, we follow a model-based top-down approach and exploit
the fact that it is easier to verify or falsify hypotheses by addi-
tional UAV recordings than to reconstruct models from observa-
tions in a bottom-up way. The implemented reasoner benefits
from the incorporation of extensive prior knowledge and accel-
erates the acquisition and interpretation of data. The presented
work is part of the project ”Mapping on demand” that is sup-
ported by the German Research Foundation (DFG) and whose
aim is to build 3D building models in real time during acquisition
of data by an UAV. With the provided predictions the UAV is able
to navigate to targets where new measurements restrict the set of
hypotheses.

Figure 1: predicting substructures in building facades: a) facade
image of Poppelsdorf Castle, b) distribution (Gaussian mixture)
as prior knowledge, c) footprint and measurements of embrasures
as observations, d) resulting hypotheses for a row of windows

This paper illustrates the approach with the prediction of a row
of windows in a building facade. Figure 1 depicts the prediction
for a facade of the Poppelsdorf Castle in Bonn, Germany. Prior
knowledge is incorporated as probability density functions and
constraints on the model parameters. The facade width f is, for
example, correlated with the number n of windows, the width
w of the windows, the distance d between these windows and
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(1) f = l + r + n ∗ w + (n− 1) ∗ d
(2) e = l + (c− 1) ∗ w + s ∗ w + (c− 1) ∗ d
(3-5) d = r1 ∗ w, l = r2 ∗ d, r = r3 ∗ l

Table 1: Constraints that characterize a row of windows

the distances l and r between the facade margin and the leftmost
and rightmost window, respectively (see equation (1) in table 1).
Parameters such as width of windows or height of floors follow
certain architectural restrictions and design decisions.

Observations such as a footprint, i.e. the widths of the facades,
and possibly measurements of a single embrasure are the input of
the reasoner. Based on these sparse observations the reasoner cal-
culates the best hypotheses consistent with the given observations
that can be verified or falsified by further observations in a top-
down manner. As can be seen in figure 1d) the observed width of
the given facade allows for three or four windows. The occluded
window on the right can be predicted. The measurements of the
embrasure belong obviously to the first window but may be part
of the left or right embrasure. An additional observation would
restrict the space of hypotheses.

The building model is characterized by discrete as well as con-
tinuous parameters. These are correlated by non-linear equations
and follow certain regularities so that their domains can be further
restricted by probabilitiy density functions. Bayesian networks
are used in order to reason within the uncertain domain of build-
ings. However, the non-linearity of the problem and the hybrid
character leads to a complex task that has to be tackled adequately
in order to met the requirements of online UAV interpretations.
Therefore, we present a new approach that combines statistical
methods with constraint propagation. While the constraint prop-
agation component exploits its strength in solving combinatorical
problems with non-linear constraints, Bayesian networks are used
to reason with uncertain data. While the constraint program in-
stantiates the discrete parameters and thus linearizes the problem,
the Bayesian network calculates the posterior belief given the ob-
servations and determines the most probable explanations for the
given facade.

The remainder of this paper is structured as follows: The related
work is introduced in section 2. Section 3 discusses the hybrid
building model that is the basis of the reasoning process which is
presented in section 4.

2 RELATED WORK

The importance of detailed building reconstruction was empha-
sized by (Haala and Kada, 2010) who give an overview of current
approaches in the context of automatic city modeling.

A model-based top-down process is one way to reconstruct build-
ings. It is used in various approaches but requires in contrast to
this work sufficient data. (Schmittwilken and Plümer, 2010) used
prior knowledge for the reconstruction and classification of fa-
cade parts in 3d point clouds. For the estimation of boundaries
the approach is based on an informed sampling. (Becker, 2009)
introduces a grammar based approach for the reconstruction of
buildings and integrates a bottom-up and top-down modelling of
3d buildings. (Pu and Vosselman, 2009) identify building parts
such as walls, roofs or windows from high density point clouds
and are able to predict occluded facade parts by incorporating
background knowledge.

Bayesian networks as used in the presented work are well es-
tablished in various fields such as financial risk management or

discrete number of windows (n), correspondence from
embrasure measurement to a window (c), side
of embrasure measurement (left/right) (s), ra-
tios between model parameters (r1, r2, r3), in-
dices of mixture components

continuous facade width (f ), left facade margin (l), right
facade margin (r), window width(w), distance
between windows (d), embrasure measurement
(e)

Table 2: parameters modelling a row of windows

medical decision support but are as well applied for computer vi-
sion and 3D modelling. In contrast to most applications we have
to cope with a hybrid model, i.e. a model with discrete as well
as continuous parameters that in general results in a computa-
tional complex task. (Lauritzen and Jensen, 2001) developed an
efficient algorithm which is able to tackle the problem of hard in-
ference in restricted hybrid networks. However, with non-linear
constraints - as in the presented building model - the algorithm is
not appropriate for our applicaton.

Constraint programs are popular tools to solve combinatorial prob-
lems. However, several approaches were developed that extend
the framework by a stochastic component. (Flerova and Dechter,
2010) adapt combination and marginalization operators to find
the m best solutions for optimization tasks in graphical models.
Intervals with cumulative distribution functions are used by (Saad
et al., 2010) in order to model a degree of knowledge for uncer-
tain data. In order to address uncertainty, our approach combines
the classical constraint propagation with Bayesian networks and
thus benefits from the strength of both paradigms.

Various approaches extract architectural features such as symme-
try from man-made objects but do not take semantical informa-
tion into account. (Pauly et al., 2008) present a framework for
detecting regular or repeated structures in point- or mesh-based
models. The algorithm is based on an analysis of pairwise sim-
ilarity transformations. Neither prior knowledge is incorporated
nor are results enhanced by semantical information. (Mitra and
Pauly, 2008) describe algorithms that discover symmetry or re-
peated structures in 3D models and discuss their use for shape
exploration and manipulation in the context of architectural de-
sign. They reinforce that regular structures are often the result
of economical, manufacturing, functional, or aesthetic consid-
erations. (Thrun and Wegbreit, 2005) present an algorithm that
detects symmetry in partial 3D views in order to reconstruct oc-
cluded surfaces of the analyzed objects.

3 HYBRID BUILDING MODEL

Man-made objects such as buildings are often characterized by
regularities. Geometric constraints, e.g. orthogonality or par-
allelity, are present in most buildings (Loch-Dehbi and Plümer,
2011). Building parameters such as the width or height of win-
dows are restricted by architectural properties and can be de-
scribed by distributions and functional dependencies.

The presented approach benefits from such a prior knowledge
about typical structures and distributions of building facades that
is based on an extensive data analysis. The building model is
characterized by discrete as well as continuous parameters (cf.
table 2) that follow certain architectural regularities and can be
constrained by non-linear functional dependencies (cf. table 1).

Continuous model parameters are further characterized by prob-
ability density functions that can be approximated by Gaussian
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mixture models with m components

m∑
i=1

wiN(µi, σ
2
i )

where the ith Gaussian distributionN(µi, σ
2
i ) is weighted bywi.

The use of mixture models enables us to use well-studied reason-
ing techniques such as Bayesian networks where the model is
defined in a directed graph with conditional probability distribu-
tions and functional dependencies (Koller and Friedman, 2009).
Herewith, the reasoner is able to generates a few good hypothe-
ses for given observations that support the UAV in the acquisition
and interpretation of new data.

Bayesian networks are powerful tools to reason with uncertain
data. While there exist efficient inference techniques for discrete
problems we have to tackle the problem that the domain of build-
ings is characterized by discrete as well as continuous parameters.
This is especially a hard task since building models are charac-
terized by nonlinear equations and discrete variables have apriori
unknown states. However, the constraints have the special form∑

i

dici,

as a product of discrete parameters di and continuous parame-
ters ci. The presented approach is therefore divided into solving
the discrete problem first and determining the continuous model
parameters afterwards. The following section delineates the cor-
responding reasoning process.

4 REASONING

The implemented reasoner expects a few observations as input
and outputs the best hypotheses, i.e. instantiations for discrete
and continuous model parameters. To this end, we incorporate
prior knowledge and combine Bayesian networks with constraint
logic programming that results in the following three reasoning
steps:

1. incorporate prior knowlegde
2. propagate constraints
3. apply Kalman Filter

Figure 2 illustrates the consequence of the reasoning steps in the
presented method. The reasoner begins with an infinite number
of hypotheses and narrows the space of hypotheses in each of the
three reasoning steps to a small number of hypotheses.

4.1 Incorporation of prior knowledge

As described in section 3 prior knowledge includes functional as
well as statistical constraints. It further allows for the integration
of architectural prior knowledge that can be extracted from foot-
prints or data bases such as the type of buildings or symmetry
properties. Domains of parameters are thus be restricted before-
hand.

Basic observations about buildings are available in a database of
about 9 million buildings extant in North-Rhine-Westfalia, Ger-
many, including their footprints and height. However, footprints
could just as well be extracted from open source projects such as
Open Street Map or provided by interpretation of data previously
selected by the UAV.

Footprints allow for further analyses in order to extend the prior
knowledge and enhance the reasoning process. For instance, a

Figure 2: The presented reasoning process restricts the space
of hypotheses in three reasoning steps: incorporation of prior
knowledge, constraint (logic) programming and Kalman filter

method is applied that enables to identify and model hierarchical
structures in building footprints. Hereby axis as well as trans-
lation symmetries within footprints are identified and modeled
using formal grammars (Dehbi and Plümer, 2011). The latter
enable with a set of rules the representation of symmetry hier-
archies with respect to various underlying global and local sym-
metry axes. Figure 3 illustrates the axis symmetries identified
from the footprint of the Poppelsdorf Castle in Bonn. The sym-
metric substructures are highlighted with the same color as the
underlying symmetry axis. In order to identify symmetries in
footprints the concept of symmetric polylines is learned in a su-
pervised way. Consequently the reasoner makes use of these in-
formation as background knowledge in order to restrict the search
space of hypotheses.

In case symmetry properties can be incorporated into the reason-
ing process, less observations are needed for hypotheses of high
quality. The fact that symmetric building parts are often similar
constructed helps to restrict the space of hypotheses.

As an example for statistical prior knowledge figure 1b shows the
distribution for the distance between the left margin of a facade
and its first window. The prior knowledge is characterized by
a Gaussian mixture with four components and extremely small
variances. In a first step, component distributions are used to
derive thresholds, i.e. they are represented by intervals of the
form [µi − λσi, µi + λσi] with means µi, standard derivations
σi and appropriate λ (3 or 4). In the same way, it can be ob-
served that continuous model parameters follow certain architec-
tural constraints and can be further restricted by ratios rj with a
finite number of states (cf. table 1). Thus, the reasoner has not to
deal with the apriori infinite solution space of variables.

4.2 Constraint logic programming

Before applying inference techniques with Bayesian networks we
are interested in possible instantiations of the discrete parame-
ters, e.g. the number of windows or the component of the Gaus-
sian mixture. The problem is described by a set of constraints
C = C1, ..., Cm on variables X = x1, ..., xn with associated
domains D = D1, ..., Dn. It can thus be defined as a con-
straint satisfaction problem (CSP) whose solution is an instan-
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Figure 3: Derived prior knowledge: Global and local axis symmetries of the Poppelsdorf Castle, Bonn, identified from the footprint.
The symmetric substructures are highlighted with the same color as the underlying symmetry axis (vertical dotted lines)

tiation of the variables, i.e. an assignment of values for each vari-
able (x1, a1), ..., (xn, an) with (a1, ..., an) ∈ D1 × ...×Dn so
that all constraints are satisfied. Constraints (logic) programming
(CLP) is well suited to solve those combinatorial problems with
nonlinear equations and are used during the reasoning process to
instantiate the discrete parameters and linearize the problem.

The constraints that define the building model (cf. table 1) re-
strict the domains of unknown parameters so that the final solu-
tion leads to a small number of qualified hypotheses. The output
of the CLP component is used afterwards as evidence for statis-
tical reasoning. The building model is now restricted to single
Gaussian distributions instead of mixtures. Above, instantiations
of discrete parameters transform the non-linear constraints to lin-
ear ones. For further reading on constraint processing the reader
is referred to (Dechter, 2003) and (Marriott and Stuckey, 1998).

4.3 Kalman filter

As a result of constraint propagation, the stochastic component
has to reason within a specially structured Bayesian network: a
state-observation model with a n-dimensional state vector x ∈
Rn representing the model parameters and a m-dimensional ob-
servation vector o ∈ Rm that can be described by the mapping
o = Mx with a measurement matrix M ∈ Rnxm. For such state
estimations the Kalman filter is an efficient algorithm for calcu-
lating the posterior (Thrun et al., 2005). It assumes that state
transition and measurement can be described linearly and initial
beliefs are represented by multivariate Gaussian distributions:

p(X;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

Gaussian distributions represented by µ and Σ are carried over
from the constraint solver of the reasoner and the posterior is
computed in a correction step implemented by a Kalman filter:

K = Σ′MT (MΣ′MT +Q)−1

µ = µ′ +K(o−Mµ′)

Σ = (Id−KM)Σ′)

where Q ∈ Rmxm is the Gaussian noise of the observations and
Id is the identy matrix. Figure 4 shows exemplarily the distribu-
tions for the left margin in different reasoning steps. The Gaus-
sian mixture (red) for this continuous model parameter serves

as prior knowledge and has four components. After instantiat-
ing the discrete parameters such as the component of the Gaus-
sian mixture the constraints are linearized and the pdf reduces to
a single Gaussian mixture (blue). The value of the continuous
model parameter is finally predicted by using the correction step
of the Kalman filter (green) that yields means and variances for
the building model according to the given evidence.

Figure 4: distributions for left margin: gaussian mixture as prior
(top) and selected component for determining the posterior (bot-
tom)

The output of the algorithm is a small set of ranked hypotheses
with instantiated discrete and continuous parameters. 20 datasets
of facades with different observations such as facade width or
embrasures were evaluated. The expected hypothesis - compared
to the corresponding ground thruth data - was among the top six
generated hypotheses. Results got more precise by adding a sin-
gle embrasure observation whereby the expected hypothesis was
on average the best hypothesis. The UAV is able to incorporate
these predictions in order to determine new flight paths, distin-
guishing between the predictions and enhancing the 3D building
model. For example, as can be seen in figure 1d, the information
whether the measured embrasure is a right or a left one or the ex-
traction of an additional embrasure would help to decide between
different hypotheses.
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In order to cope with a wide range of building facades the rea-
soner is implemented in an object oriented and modular manner.
For example each single facade is represented by an internal do-
main model and can be connected to other facades in a complex
facade. For extensibility and flexibility, domain parameters and
their characterizing constraints and distributions are further de-
fined in a backend module so that the reasoner works independent
from its input parameters. Thus, new problems can be addressed
easily.

5 CONCLUSION

To conclude, the reasoner supports the acquisition and interpre-
tation of data by an unmanned aerial vehicle. Based on LOD 1
models it restricts the space of hypotheses by predicting substruc-
tures in facades and exploits the fact that it is easier to verify or
falsify hypotheses by the UAV engine than to reconstruct mod-
els from observations in a bottom-up way. On the one hand, the
acquisition of high-density measurements is no longer required.
On the other hand, occluded building parts can be predicted. The
considered building model is characterized by continuous as well
as discrete parameters that in turn are correlated by non-linear
constraints. To tackle the resulting problem of hard inference, the
presented approach combines constraint logic programming with
Bayesian networks that in turn benefit from an extensive prior
knowledge such as Gaussian mixture models, functional depen-
dencies or derived information such as symmetries. Thus, the
implemented algorithm enables the generation of first hypotheses
based on sparse observations that can be refined subsequently by
the UAV.
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