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ABSTRACT:

This paper presents a concept and first experiments on a keyframe-based incremental bundle adjustment for real-time structure and
motion estimation in an unknown scene. In order to avoid periodic batch steps, we use the software iSAM2 for sparse nonlinear
incremental optimization, which is highly efficient through incremental variable reordering and fluid relinearization. We adapted
the software to allow for (1) multi-view cameras by taking the rigid transformation between the cameras into account, (2) omni-
directional cameras as it can handle arbitrary bundles of rays and (3) scene points at infinity, which improve the estimation of the
camera orientation as points at the horizon can be observed over long periods of time. The real-time bundle adjustment refers to sets
of keyframes, consisting of frames, one per camera, taken in a synchronized way, that are initiated if a minimal geometric distance to
the last keyframe set is exceeded. It uses interest points in the keyframes as observations, which are tracked in the synchronized video
streams of the individual cameras and matched across the cameras, if possible. First experiments show the potential of the incremental
bundle adjustment w.r.t. time requirements. Our experiments are based on a multi-camera system with four fisheye cameras, which are
mounted on a UAV as two stereo pairs, one looking ahead and one looking backwards, providing a large field of view.

1 INTRODUCTION

The presented work is part of the visual odometry package within
the DFG-project Mapping on Demand (MoD) at the University of
Bonn and the Technical University of Munich, in which we use
a lightweight autonomously navigating unmanned aerial vehicle
(UAV). The goal of the project is the development and testing of
procedures and algorithms for the fast three-dimensional seman-
tic mapping of inaccessible objects.

The on-board sensing of lightweight UAVs has to be designed
with regards to their limitations in size and weight, and limited
on-board processing power requires highly efficient algorithms.
In this project we use a quadrocopter, equipped with a GPS unit,
an IMU, ultra sonic sensors, a 3D laser scanner, a high resolu-
tion camera and four fisheye cameras, which are mounted as two
stereo pairs, one looking ahead and one looking backwards, pro-
viding a large field of view, see Fig. 1. The two stereo cameras
are used (a) besides the ultra sonic sensors and the laser scan-
ner for obstacle perception in the environment for autonomous
navigation and (b) besides the GPS-unit and IMU for ego-motion
estimation. The goal is to use the on-board processed ego-motion
as an initial estimate for the orientation of the images of the high
resolution camera, taking images with about 1 Hz, for near real-
time semantic surface reconstruction on a ground station.

The four cameras with Lensagon BF2M15520 fisheye lenses with
a field angle up to 185◦ capture four image sequences with a
frame rate of 14 Hz in a synchronized way. The basis between the
cameras amounts to 20 cm providing highly overlapping views
at each time of exposure, see Fig. 2. The monochromatic im-
ages have a resolution of 752×480 pixels. In this paper we treat
the issue of visual odometry for real-time ego-motion estimation
using the synchronized images of the multi-camera system in a
keyframe-based fast incremental bundle adjustment.

Bundle adjustment is the work horse for orienting cameras and
determining 3D points. It has a number of favorable properties,

Figure 1: Illustration of the UAV, one stereo pair is looking for-
ward and one backwards providing a wide field of view.

e.g. it is statistically optimal in case all statistical tools are ex-
ploited and it is highly efficient in case sparse matrix operations
are used and variable reordering is done to prevent unnecessary
fill-in. Our previous work yielded a rigorous batch bundle ad-
justment for omnidirectional and multi-view cameras for an ef-
ficient maximum-likelihood estimation with scene points at in-
finity, called BACS (bundle adjustment for camera systems), see
(Schneider et al., 2012). Multi-camera systems can be used like
omnidirectional cameras to augment the effective aperture angle.
Far or even ideal points, i.e. points at infinity, e.g. points at the
horizon, have been proven to be effective in stabilizing the orien-
tation of cameras, especially their rotations.

We want to use the power of bundle adjustment but with a high
performance enabling a real-time keyframe-based visual SLAM
application. Keyframe-based methods computationally select
only a small number of past frames to process a global bundle ad-
justment. Incremental bundle adjustment avoids periodical batch
steps with recurring calculations by performing only calculations
for entries of the information matrix, i.e. the normal equation ma-
trix or inverse covariance matrix, that are actually effected by
new measurements. Kaess et al. (2012) provide a sparse non-
linear incremental optimization algorithm called iSAM2, which
is highly efficient, as only variables are relinearized that have
not converged yet and as fill-in is avoided through incrementally
changing the variable ordering.
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In this paper we focus on our concept for the visual odometry
with a multi-view camera system consisting of omnidirectional
cameras using the iSAM2 algorithm for a keyframe-based incre-
mental real-time bundle adjustment.

The paper is organized as follows. In the next section we present
our prototype realizing the image processing for data acquisition
and reliable data association and the robust orientation of a set of
frames taken in a synchronized way. Further, we show how the
sparse non-linear incremental optimization algorithm iSAM2 can
eliminate the need for periodic batch bundle adjustment steps for
mapping and motion estimation on sets of keyframes. We follow
up in section 3 with first experiments regarding the achieved tim-
ings and observed properties of the algorithm used. Finally we
conclude and give an outlook on our future work in section 4.

Related Work. Real-time bundle adjustment has been tack-
led intensively in the photogrammetric community, see e.g. the
review by Grün (1987). It has recently attracted researchers
in videometry for real-time visual odometry. Basic techniques
for achieving real-time capabilities are Kalman-filter (Davison,
2003; Choi and Lee, 2012), sliding bundle adjustment (Engels et
al., 2006) and incremental bundle adjustment (Mouragnon et al.,
2009), the last two techniques aiming at higher stability in deter-
mining the pose parameters. It is useful to exploit the sparsity
during a sliding window bundle adjustment, cf. (Sünderhauf et
al., 2005; Klein and Murray, 2007). Recently, filtering techniques
based on bundle adjustment, have intensively been investigated.
They use current image information to improve the past pose and
map information. Strasdat et al. (2012) show that filtering all
frames is inferior to using keyframes and that a high number of
features is superior to a high number of frames. Incrementally up-
dating the normal equations can be replaced by updating the QR-
factorization, described in detail in (Golub and Van Loan, 1996)
and e.g. proposed for aerial on-line triangulation (Grün, 1984).
It has been realized for generic incremental maximum a poste-
riori estimation by Kaess et al. (2008) in a first version without
considering reordering or relinearization. A fluid relinearization
and reordering has recently been published by Kaess et al. (2012)
using a bayes-tree, published in (Kaess et al., 2010).

Multi-camera systems are regularly used for odometry, especially
stereo camera systems, e.g. (Mostafa and Schwarz, 2001; Strasdat
et al., 2012) and more than two cameras e.g. in (Maas, 1999) or
(Kaess and Dellaert, 2006). Fisheye-Cameras, see e.g. (Abraham
and Förstner, 2005), catadioptric cameras, see e.g. (Aliaga, 2001)
or omnidirectional cameras, see (Tardif et al., 2008) ensure stable
geometric positioning and full scene coverage due to their large
field of view.

2 OVERALL CONCEPT

2.1 Overview

Visual odometry consists in determing the pose of the cameras in
real-time. Our system uses feature points. The process consists
of several steps:

1. The data acquisition and association detects feature points,
performs the matching and provides camera rays associated
with the previous and the other cameras.

2. The orientation of individual frames aims at providing ap-
proximate values for the subsequent bundle adjustment and
allows to select keyframes.

3. The incremental bundle adjustment uses the new informa-
tion at a keyframe and merges it optimally with the previous
information.

Figure 2: Example frame set taken with the four fisheye cameras
in a synchronized way, that contains 50 feature points in each
frame, which are tracked using the OpenCV implementation of
the KLT tracker.

As the last step uses all available data and therefore is the most
costly one, it needs to be an efficient one, to ensure real-time ca-
pability, and requires the previous steps to guarantee outlier free
information. Therefore we chose the software package iSAM2
for “incremental smoothing and mapping” for the third step and
aim at efficient methods for reliable data association. The steps
are now described in more detail.

2.2 Data Acquisition and Association

Our system for visual odometry is based on interest points, which
are tracked in the individual cameras using the OpenCV imple-
mentation of the KLT tracker. Interest points are corners in the
gradient image with a large smallest eigenvalue of the structure
tensor, cf. (Shi and Tomasi, 1994), and detected by using the
function cvGoodFeaturesToTrack and tracked using the func-
tion cvCalcOpticalFlowPyrLK, which implements the itera-
tive Lucas-Kanade method with pyramids according to Bouguet
(2000). Fig. 2 shows an example of extracted feature points in the
images of the four fisheye cameras.

Tracked feature points are converted into ray directions pointing
to the observed scene points in the individual camera systems.
For this we model the fisheye objective with the equidistant-
model described in (Abraham and Förstner, 2005) allowing for
ray directions with an intersection angle equal or larger than 90◦

to the viewing direction. The interior orientation of each cam-
era is determined in advance by camera calibration according to
Abraham and Hau (1997) using Chebyshev polynomials. Using
the equidistant-projection and applying all corrections to the fea-
ture points, we obtain image points ex lying closer to the prin-
cipal point H than the gnomonic projections gx of the observed
scene points, see Fig. 3. The spherically normalized ray direction
kx′s can be derived from ex by using the normalized radial dis-
tance r′ = |ex| growing with the angle φ between the viewing
direction and the camera ray.

The uncertainty of the image coordinates can be transformed to
the uncertainty of the direction kx

′s
of the camera ray via vari-

ance propagation yielding Σkx′skx′s . In all cases the covariance
matrix of the camera rays is singular, as the normalized 3-vector
only depends on two observed image coordinates.

To match feature points in the overlapping images of a stereo
camera pair, we determine the correlation coefficients between
the local 7×7 image patches at the feature points in the left
and right images. Using the known rotation R2

1 and translation
t2
1 from the left into the right camera of the respective stereo
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Figure 3: Relation between sensor point, viewing direction and
viewing ray.

Figure 4: Example images taken in a synchronized way in the
left and right camera of a stereo pair. The extracted feature point
in the left image on the rightmost car has the illustrated epipolar
line in the right image. The matching point in the right image lies
on the indicated yellow line and the corresponding local image
patches show a high correlation.

pair, which is determined in advance according to Schneider
and Förstner (2013), we can reduce the amount of possible can-
didates to feature points lying with regard to their uncertainty
close to the corresponding epipolar lines, see Fig. 4, by check-
ing the significance of the contradiction to the coplanarity of
[kx
′s
1 ,R2

1t
2
1,

kx
′s
2 ]. We assume feature points with the highest

correlation coefficient ρ1 to match, if ρ1 is above an absolute
threshold, e.g. 0.8, and – if there is more than one candidate
close to the epipolar line – the closest-to-second-closest-ratio
r = ρ2/ρ1 with the second highest correlation coefficient ρ2 is
lower than an absolute threshold, e.g. 0.7. Finally we check if this
criterion holds also for all feature points in the left image if there
are more than one feature points on the corresponding epipolar
lines. This procedure leads in some rare cases to wrong matches,
which can be detected with a third observing ray from another
pose. Matched feature pairs in the stereo cameras are used be-
neath visual odometry for fast obstacle detection by directly in-
tersecting the corresponding camera rays using the known mutual
orientations between the cameras within a stereo pair.

2.3 Orientation of a Set of Frames

A map in our context is a set of scene points X = {Xi, i =
1, ..., I}. It is initialized by forward intersecting the matched ray
directions in the stereo pairs in the initiating frame set.

The initiating frame set is chosen as the first keyframe set with a
fixed pose Mk, defining the coordinate system of the map up to
scale. The index k denotes a motion of a set of keyframes Kk of
all keyframe sets K = {Kk, k = 1, ...,K} ⊂ T = {Tt, t =
1, ..., T}, taken out of the set T of all frame sets Tt, t being the
index referring to the time of exposure of a set of frames taken in
a synchronized way.

After initialization of the map, robust estimates for the motion
Mt of the camera system in the map are computed at each time
of exposure t via simultaneous resection of all cameras. We

Figure 5: A two-camera system with fisheye cameras c = 1, 2
with projection centers Ztc, rigid motion Mc and time-varying
motion Mt, having a field of view larger than 180◦ shown at two
exposure times t = 1, 2 observing two points Xi, i = 1, 2, X1

being close by and X2 at infinity.

use a generalized camera model with multiple projection centres
c = 1, ..., 4 and known system calibration, described by the mo-
tion Mc of each single camera from the camera system. The mea-
surement equation, which considers mutually fixed single view
cameras, allows the single cameras to be omnidirectional and al-
lows for far or ideal scene points, reads as

vitc = JT(x′itc)N
(
[I3|03]M−1

c M−1
t Xi

)
(1)

with the homogeneous scene point Xi, motion matrices Mt and
Mc, and the observed ray direction kx

′s
itc and residual vitc of

scene point i in camera system k at time t, see Fig. 5, whereby
J(x) = null(xT) and N(x) = x/|x|.

We determine the solution for the six pose parameters of Mt

by a robust iterative maximum likelihood-type estimation down
weighting observations with large residuals by minimizing the ro-
bust Huber cost function, see (Huber, 1981). The rigid motions
Mc are determined in advance using a rigorous bundle adjustment
estimating the system calibration as described in (Schneider and
Förstner, 2013). Using the pose Mt−1 as the initial approximate
value, the estimation for Mt converges in most cases after 2-3 fast
iterations. This allows the orientation of set of frames taken with
a high frame rate. A track of observations getting a low weight is
put on the blacklist. Tracks on the blacklist are not considered in
the following frames anymore.

2.4 Keyframe-Based Incremental Bundle Adjustment

Bundle adjustment refers to the sets of keyframes, which reduce
the processing to some geometrically useful, tracked observa-
tions. A new keyframe set with motion Mk is initiated in case a
minimal geometric distance to the last keyframe set with motion
Mk−1 is exceeded. In case a new keyframe set is initiated, the
observations x′ikc are used to update and refine the scene points
in X and poses in K in the incremental bundle adjustment. We
classify the tracked observations into two sets, x ′1 and x ′2 , where
x ′1 are the observations of scene points that are already in the
map and x ′2 denotes those observing new scene points. The map
is continually expanded as new keyframe sets are added. Initial
values for new tracked scene points are obtained by forward inter-
section with observations x ′2 , where we claim that each track con-
sists of at least three keyframe sets. Care has to be taken with the
sign: We assume the negative Z-coordinate of each camera sys-
tem to be the viewing direction. The homogeneous representation
of the scene points then need to have non-negative homogeneous
coordinates Xi,4. In case of ideal points, we therefore need to
distinguish the scene point [Xi; 0] and the scene point [−Xi; 0],
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which are points at infinity in opposite directions. Intersected
scene points that show large residuals in the observations are put
on the blacklist and deleted in the data association. Observations
x ′2 are assumed to be revised from corrupted tracks via the former
robust resection.

The map X and the set of poses in K is simultaneously refined
using bundle adjustment. For our real-time application the pro-
cessing of a new keyframe set Kk needs to be finished by the time
the next keyframe set is added. For the first ten keyframe sets we
use batch bundle adjustments as the map contains only a small
number of scene points yet. After that the new information are
incrementally merged with the previous information, yielding a
fast optimal solution for the bundle adjustment using iSAM2, see
(Kaess et al., 2012).

Incremental Bundle Adjustment. For bundle adjustment we
use the measurement equation

vikc = JT(x′ikc)N
(
[I3|03]M−1

c M−1
k Xi

)
(2)

that is not linear in the scene points and pose parameters of Xi

and Mk. Linearization of the non-linear model at the actual lin-
earization points, which is shown in detail in (Schneider et al.,
2012), leads to the least squares optimization problem

∆̂x = argmin
∆x

‖A∆x− b‖2Σ (3)

with the Jacobian A that contains for each observation x′ikc the
block entries Aikc, right hand side (RHS) vector b, unknown up-
dates ∆x for the scene point and pose parameters and for proper
weighting the covariance matrix Σ that contains the covariance
matrices of all x′ikc that we assume to be uncorrelated with each
other. Using the decorrelated Jacobian A′ = Σ−1/2A, which re-
tains the sparsity pattern of A, yields in eq. (3) a metric with Σ as
identity matrix.

QR factorization of A′ yields A′ = Q[RT0]T where R is up-
per triangular and Q is orthogonal, see (Golub and Van Loan,
1996). Applying this factorization to the least squares prob-
lem in eq. (3) with [dT, eT] = QTb yields ‖A′∆x − b‖2 =
‖R∆x − d‖2 + ‖e‖2, which becomes minimal if R∆x = d,
leading to the unique solution

R∆̂x = d . (4)

As R is upper triangular, we can solve for ∆̂x with simple back-
substitution. The expensive part is done by QR decomposition.
The matrix R is called square root information matrix, as the
information matrix, i.e. the normal equation matrix, is given by
N = RTR.

When a keyframe set is initiated with new measurements, gen-
erating the Jacobian W and RHS g, the previously calculated
components of R can be reused yielding the new system[

R 0
W

] [
∆x1

∆x2

]
=

[
d
g

]
(5)

with updates ∆x1 and ∆x2 for the old and new parameters, re-
spectively. Instead of applying an expensive full QR factoriza-
tion, the entries below the diagonal can be efficiently eliminated
by using Givens rotations, see (Golub and Van Loan, 1996), to
obtain the updated square root information matrix.

The iSAM2 Algorithm. Applying this procedure iteratively
would keep the linearization point unchanged, but relineariza-
tion would involve the recalculation of R. As new measurements

(a)

(b)

(c)

X
X

X X

X X

X

X X

X

X
X

X X

X
X

X
X

X
X

Figure 6: (a) A small exemplary factor graph and the associated
Jacobian matrix A where scene points X1 and X2 are observed
from the poses M1, M2 and M3 and odometry measurements be-
tween the poses are given. (b) The so-called chordal Bayes net
and the associated square root information matrix R result from
factorization of the factor graph with the elimination ordering X1,
X2, M1, M2, M3. The clique containing the last eliminated vari-
able is called the root. (c) The Bayes tree and the associated
square root information matrix R describe the clique structure in
the Bayes net. The association of cliques and their conditional
densities with rows in the R factor is indicated by color. Adapted
from Kaess et al. (2012).

often have only a local effect and fill-in may become time ex-
pensive, Kaess et al. (2012) encode the conditional density of
cliques in a so-called Bayes tree, see Fig. 6, which allows for an
efficient incremental reordering, just-in-time relinearization and
partial solving, when parameters change only locally. Using this
data structure replaces also the need to form neither the complete
matrices A nor R explicitly.

When a new measurement is added, i.e. a factor f(Mk,Xi), only
the paths in the Bayes tree between the cliques containing Mk and
Xi as well as the root are affected by the update. The affected part
is turned into a factor graph, the new factors are added to it and a
new elimination ordering is applied, to avoid fill-in. A new Bayes
tree is formed and all unaffected sub-trees can be reattached.

Relinearization is performed only on variables whose estimated
update is larger than a threshold β, which can be defined for dif-
ferent types of variables. If a variable is chosen to be relinearized,
all cliques up to the root have to be removed from the Bayes tree
and replaced by the relinearized factors involved. The approach
is called fluid relinearization (Kaess et al., 2012) and is done in
combination with the update step.

Solving via back-substitution starts at the root and continues to
all leaves. A nearly exact but computational cost-efficient solu-
tion does not require solving for all variables, as only the top of
the Bayes tree is affected by new factors and relinearization. Pro-
cessing a sub-tree stops in case a clique is reached referring to
variables whose updates are smaller than a small threshold α.
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3 EXPERIMENTS

We have integrated our measurement model in eq. (2) into the
software package GTSAM 2.3.0, which provides a fast imple-
mentation of the iSAM2 algorithm and is described by Dellaert
(2012). GTSAM provides a comprehensive MATLAB interface
that allows us to perform first experiments, as our prototype for
visual odometry is mainly running in MATLAB so far.

To test the real-time capabilities and the optimality of the incre-
mental bundle adjustment we use an image sequence taken with
the four fisheye cameras from our UAV performing two circular
motions. The image sequence consists of 1,800 frame sets taken
with 14 Hz. We apply a high-weighted prior on the 6-parameter
pose of the first keyframe to define the coordinate system of the
map. The scale is defined by the known mutual orientations in
the multi-camera system. Our system initiates a new keyframe
set after each 1 m resulting in 107 keyframe sets. Tracking 50
feature points in each camera and setting β for the rotations to
0.5◦ and for the translations to 3 cm yields a very fast processing
of the bundle adjustment that is always faster than 1 second on a
3.6 GHz machine, see Fig. 7. The required time is independent
of the number of new factors added to the Bayes tree but rather
highly depends on the number of cliques related to variables that
need to be relinearized.
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0 10 20 30 40 50 60 70 80 90 100 110
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Figure 7: (a) Required time for processing incremental bundle
adjustment using iSAM2. (b) Number of cliques related to re-
linearized variables (solid) and the total number of cliques in the
Bayes tree (dashed), note the effect on (a). (c) Number of new
factors added, note that the number has no effect on (a).

The choice of β has a significant influence on the required time
and the obtained accuracy of the estimated parameters. Set-
ting β too low leads to relinearization of all variables on every
keyframe and setting β too large decreases the accuracy of the
estimates. As we expect to have better initial parameters with
DGPS-observations, which will be included into the estimation
process soon, the need for frequent relinearizations should de-
crease.

The root mean square error (RMSE), which is determined after
each incremental bundle adjustment, is in the order of 2–3, see
Fig. 8, which is quite large as we assumed a standard deviation of

0 10 20 30 40 50 60 70 80 90 100 110
0
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4

keyframe

R
M

S
E

Figure 8: Root mean square error (RMSE) for each keyframe set.

σl = 1 pixel for the extracted feature points. We apply the batch
bundle adjustment BACS on the observations used by iSAM2 and
we use the estimated values of iSAM2 as approximates. We re-
tain the pose of the first keyframe set to use the same gauge def-
inition as we did using iSAM2. We obtain an empirical variance
factor of σ̂2

0 = 2.02 which is quite large, being in the order of the
RMSE. Applying the robust Huber minimizer shows no signifi-
cant outliers and yields an equal robust empirical variance factor
of σ̂2

0 = 1.962. The reason for the poor accuracy of the observa-
tions still has to be identified. It could lie e.g. in the tracking, in
the assumption that the multi-camera system is rigid, not taking
into account the possibility of vibrations, or a poor image quality.
Differences in the estimated pose parameters between those from
iSAM2 and BACS are shown in Fig. 9 for each set of keyframes.
These differences are within their estimated uncertainty, shown in
Fig. 10. The results show that iSAM2 provides estimates which
are in a statistical sense optimal like the rigorous batch bundle
adjustment BACS.
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Figure 9: Deviations between the estimated rotation angles and
translations of BACS and iSAM2 on all set of keyframes. The
z-axis points in flight direction, the x-axis points upwards and the
y-axis is orthogonal to both.

4 CONCLUSIONS AND FUTURE WORK

We presented our system for visual odometry performing a
keyframe-based bundle adjustment for real-time structure and
motion estimation in an unknown scene. Incremental bundle ad-
justment is performed by using the iSAM2 algorithm for sparse
nonlinear incremental optimization in combination with our mea-
surement equations allowing for multi-view cameras, omnidirec-
tional cameras and scene points at infinity. First experiments
show the high potential of the incremental bundle adjustment
w.r.t. time requirements and optimality.

Future work will focus on the issue of vibrations due to the ro-
tors of the UAV on the mutual orientations of the multi-camera
system, the integration of a down-weighting function within the
fluid relinearization process and the integration of GPS observa-
tions into the visual odometry system. Further we have to solve
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Figure 10: Estimated standard deviations of the estimated rota-
tion angles and translations of BACS on all set of keyframes. All
are up to the fourth digit identical to these provided by iSAM2.
The axes are oriented as described in Fig. 9.

the issue of estimating scene points which are at first near to the
camera system and as the camera system moves away lying nu-
merically at infinity. Furthermore we are porting the prototype,
which is mainly running in MATLAB, to a fast C++ implemen-
tation.
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