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ABSTRACT:

Target location in an aerial image has become a critical issue with the wide application of Unmanned Aerial Vehicle (UAV) in the 
fields of target tracking and reconnaissance. This paper proposes a pipeline of target location based on the existing digital map and 
Digital Elevation Model (DEM). It utilizes the corresponding points between the aerial image and the digital map to build a mapping 
model, and calculate the position of target from this model. The pipeline can provide not only an approximate position obtained by 
the Direct Linear Transformation (DLT), but also an accurate value by implementing a few of iterations. The related error analysis is 
conducted to verify the positioning accuracy of this strategy. It can successfully avoid the dependence of the performance of GPS 
and POS, and ensure the high positioning precision simultaneously, which is attractive to low-cost surveying applications of small 
UAVs.

1.  INTRODUCTION

In conventional methods of target location, the projection 
model are constructed from the sensors’ measurements, 
including the position and attitude information provided by 
inertial Position and Orientation System (POS) and Global 
Positioning Satellites (GPS), in order to achieve a target 
location for the camera with a known orientation (Hongjian, 
1998). The expensive high-stability platform and high-
precision POS are required to indicate the exact orientation 
(Shaoli, 2005). However, UAV, as an economical and 
convenient means of aerial photography, is seldom equipped 
with these expensive sensors. It is necessary to find a target 
location strategy suitable for UAVs, in which the positioning 
precision does not rely on the performance of GPS and POS.
As a mature surveying and mapping product, the digital map 
integrates the ground mapping, aerial mapping, and aerospace 
mapping data, which is helpful to aid the target location as a 
reference due to its rich and accurate data (DongGyu, 2002). 
This paper addresses a pipeline of target location based on the 
existing digital map and Digital Elevation Model (DEM). It 
utilizes the corresponding points between the aerial image and 
the digital map to build a mapping model, and calculate the 
position of target from this model. Since it makes full use of the 
high-quality reference, like digital map and DEM, its 
positioning accuracy is not affected by the performance of GPS 
and POS. It theoretically keeps the positioning deviation level 
nearly approximate to the quantization error of digital map or 
DEM, as long as exact corresponding points. Therefore, the 
correspondences are assumed to be correct in this paper, which 
can be given manually or automatically. 
According to the deviation of unknown model parameters, the 
mapping model can be respectively represented as the 
following three forms: 1) A full-parameter model. It consists of 
11 perspective parameters and 2 radial distortion parameters, 
providing at least 7 corresponding points. It is suitable for the 
complex terrain very well. 2) A simplified model under some 
constraints. The constraint is derived from prior knowledge 
which is known beforehand, like focal length, aspect ratio, even 
an interior orientation, etc. Thus, a full-parameter model is 
simplified by the given constraints to a concise model. 3) A 
homography model mapping from a plane to another plane. It is 
considerably simple, fitting the flat terrain or the undulating 

slower terrain relative to the FOV of camera. 4 non-collinear 
corresponding points are adequate to solve the model, not 
referring to any DEM data simultaneously. For the above 
models, the pipeline can yield not only an approximate position 
obtained by the Direct Linear Transformation (DLT), but also 
an accurate value by implementing a few of iterations. For the 
case requiring DEM data, the position of target could be 
confirmed by intersecting the ray determined by the principal 
point and the target image point with the terrain surface. 
Therefore, before running this location pipeline, the terrain 
surface fitting should be performed by interpolating the 
existing DEM data.
Besides, this paper gives the error analysis for each mapping 
model, reflecting the impact of various error sources on the 
model precision and positioning accuracy. The error sources 
take into account the quantization errors of digital map and 
DEM. This analysis provides a valuable reference to select the 
proper-resolution map and DEM for the assigned location 
accuracy. Meanwhile, some experiments have been made to 
testify the positioning accuracy of each mapping model, under 
different levels of error. It is proved that it is feasible to carry 
out an accurate target location for aerial images, which are 
captured by UAV without the expensive stabilized platform 
and high-precision POS.

2.  MAPPING MODELS

The mapping models reflect the transformation from the 
unknown parameters to the measurements. The measurements 
include the image coordinates and their corresponding object 
coordinates. Besides different forms of projection parameters, 
the unknown parameters also involve the true object 
coordinates, in light of the both measurement errors of image 
points and corresponding object points. And the number of 
unknown parameters varies with the different mapping models.

 , , TX Y ZX  is the coordinates of object point in the 
geographical coordinate system, which is assigned as a 
reference system.  , Tx yx  is the coordinates of image point 

in the image coordinate system. X  and x  are respectively 
their homogeneous coordinates. It is available to get the 
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transformation between the geographical coordinate system and 
the map coordinate system, and all the ground control points on 
the map could easily transformed into the reference system to 
calculate mapping models.

2.1 Full-parameter Model

In this model, the mapping relationship covers the whole 
imaging process, particularly the image motion caused by 
radial distortion. Hence, the distortion corrected image 
coordinates cx  represent the imaging point of an object point 
through the pinhole projection. For simplicity, the distortion 
correction process can be written as:

 
 

2 4
1 2

2 4
1 2
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c
c
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             
x (1)

where 1k  and 2k  are the unknown parameters in terms of 
radial distortion.
Then, the projection matrix between the object point and the 
corrected image point is written in homogeneous coordinates 
as:
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where ip is the i-th row of projection matrix 3 4P . It may be 

expressed in terms of the vector cross product as T
c  x PX 0 . 

Then for each correspondence j jx X , the following two 
equations are derived, where p is a 12-vector made up of the 
entries of the matrix 3 4P . Thus, we may obtain a 2 12n   
matrix A  by stacking up the two equations for each 
correspondence (Richard, 2003). 
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The unit singular vector corresponding to the smallest singular 
value of A  is the solution of the projection parameters p , as 
the result of direct linear transformation (DLT). This linear 
estimate could be a starting point minimizing the reprojection 
error. The reprojection error is to minimize the squared 
Mahalanobis distance:

2min ( )f


b u  (4)

The function  f   is defined by

   1 2 1 1 1
ˆ ˆ: , , , , , , , , , ,n n nf k k p X X x x X X    

This cost function is minimized over all 3 14n   unknown 
parameters (forming a vector u ) for n  correspondences, and at 
least 7 correspondences (forming a vector b ) are required to 
establish these parameters.   is the covariance matrix of 
measurements. The nonlinear function is usually computed by 
iterative techniques. Since it is usually vulnerable and sensitive 
to the starting point, optimization may converge to a local 
minimum instead of diverging from the true solution. The 
solution of DLT is a reasonable initial estimation and the 
Levenberg-Marquardt (LM) iteration method could be used to 
provide fast convergence and regularization in the case of this 
over-parameterized problem (William, 1988).
It is underlined to normalize the measurements before applying 
the DLT algorithm. Normalization can effectively reduce the 
condition number of the set of DLT equations, improving the 

converging property (Richard, 1997a). Let the normalization 
matrix for image points be a similar transformation T  and 
normalization matrix for corresponding object points be 
another similar transformation U  , the relationship between the 
projection matrixes before and after the normalization could be 
given by:

-1
normP T P U  (5)

where normP is the projection matrix of normalized data.

2.2 Simplified Model under Some Constraints

1.  Without the radial distortion
If the corrected parameters related to radial distortion are 
measured in advance, the corrected image points cx  may be 
estimated and the remaining 12 projection parameters can be 
accurately computed according to Eq.(3). 

2. With the given intrinsic matrix
If the intrinsic matrix K  is known through camera calibration, 
the projection matrix can be written in terms of matrix 
multiplication as

 |P = K R t (6)

0
0 0 1

x

y

f c
f c
 

   
  

K (7)

where f  is the focal length,   is the skew,  ,x yc c  is the 

principal point. R  is a 3 3  rotation matrix representing the 
orientation of the camera coordinate frame, and t  represents 
the coordinates of the camera center in the world coordinate 
frame. R and t are called the exterior orientation. The rotation 
matrix can be expressed as the Rodrigues formula:

     2, sin (1 cos )  
 

   R v I v v  (8)

where v is a unit 3-vector in the direction of the axis and   is 
the angle of rotation. Hence, the number of unknown projection 
parameters is 7. Under this constraint, at least 4 
correspondences are required to iteratively solve the nonlinear 
problem by LM method. The starting point of 7 parameters can 
be solved according to the calculated projection matrix of DLT.

2.3 Homography Model

Homography transformation reflects the mapping relationship 
between two 2-dimension planes, only relying on 4 
correspondences. Therefore, the 3-dimension geographical 
coordinate system is simplified to a concise 2-dimension planar 
coordinate system composed of the longitude and latitude. 
Considering the limited covering area of one frame, the angular 
information of longitude and latitude may be approximated by 
the linear interpolation. The x is a homogeneous vector 
consisting in the interpolated longitude and latitude. The 
similar equations are given by:
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h 0
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(9)

where ih  is the i-th row of the homography matrix 3 3H . It can 
be solved by the DLT algorithm and the normalization should 
be implemented in advance. Because the altitude is not used 
here, i.e., the DEM is not demanded, this model is suitable for 
the flat terrain or the undulating slower terrain relative to the 
FOV of camera.
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3.  ERROR ANALYSIS

3.1 Residual Error

The RMS (root-mean-squared) residual error is the average 
difference between the measurements and their estimations. It 
reflects how well the computed unknown parameters match the 
input data, and explains the accuracy of the estimation 
procedure to an extent. Suppose the measurements are subject 
to any Gaussian distribution, with covariance matrix  . The 
residual error is the expected Mahalanobis distance 

2ˆ( )f


b u .

3.2 Estimation Error

Since there is still a deviation between the noise-free data and 
noisy measurements, the model may not give an approximation 
to the true noise-free values, even when the residual error is 
zero. However, estimation error is the distance from the 
estimated value to the true result, which could evaluate the 
performance of an estimation algorithm. It usually decreases in 
inverse proportion to the number of measurements. It is only 
used for synthetic data, or at least data for which the true 
measurements are known. Under the assumption that the 
surface consisting of valid measurements is locally planar, the 
estimation error may be written as

2 2 2ˆ ˆ( ) ( ) ( ) ( )f f f f    b u b u u u (10)

where u is the true value, and û is the estimated value.
If the estimation correctly converges to a global true result, 
both sides of this equation are basically equal. Otherwise, the 
right-hand-side of Eq. (10) is likely to be much larger than the 
left-hand-side.

3.3 Covariance Matrix

There are many factors affecting the uncertainty of the 
estimated parameters, including the number of 
correspondences, the accuracy of measurements, as well as the 
configuration of correspondences. Especially, a degenerate 
configuration may lead to a wrong estimation (Newsam,1996). 
The uncertainty of the computed transformation is conveniently 
captured from the covariance matrix of the transformation. 
1. Full-parameter model
The parameter vector 1 2( , , , )k ku p X  has 3 14n  entries, where 
14 parameters describe the transformation matrix, distortion 
corrected parameters, and 3n  parameters represent estimates 
of n   object points. The Jacobian matrix splits up into two parts 
as  |J D B  where D  and B  are the derivatives with respect 
to the camera parameters and the object points respectively. 
The covariance matrix is written as
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where uJ   is the Jacobian matrix evaluated at a parameter 
vector u .
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where, ( , )s tT is the element of ( , )s t in normalization matrix T . 

cj x p is expressed as Eq. (16), and cj x X is written as Eq. 

(17). Then, u can be calculated by Eq. (11).
2. Simplified model under some constraints

Without the radial distortion
For the parameter vector ( , )u p X , the Jacobian matrix can be 
written as
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Then the covariance matrix u can be gained by Eq. (11).
With the given intrinsic matrix
For the parameter vector ( , , , )T Tu v t X , the Jacobian matrix 
can be written as
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The derivative ( , , )T T p v t is a 12 7  matrix which could 
be computed from the projection matrix. Then the covariance 
matrix u can be gained by Eq. (11) in the same way.

3. Homography model
If the image points are accurate, and the covariance matrix of 
map points is x  , then the covariance matrix of a parameter 
vector h  constructed from homography transformation can be 
written as
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3.4 Location Error

The location error could be evaluated by the covariance matrix 
in point transfer. For the projection model, the covariance of 
transferred point is expressed as

1( )T T       X X x p p p XJ J J J (22)

where   pJ x p could be given by Eq. (16), and 

  XJ x X could be given by Eq. (14) or Eq. (17). In Eq. (22), 
it is mandatory to keep no cross-correlation between X  and 
p , so X should be new points not used in the computation of 
the transformation p .
For homography model, the covariance of transferred point is 
similarly expressed as

T T
    x h h h x x xJ J J J (23)

where   hJ x h could be gained by Eq. (21), and 
  xJ x x can be computed by Eq. (24)
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 4.  EXPERIMENTS

In order to test our pipeline, we design a set of synthetic data, 
the true values of correspondences x X  completely 
satisfying the projection transformation in Eq. (2), where x are 
the coordinates of image points and X are the geographical 
coordinates of matching object points. These image points are 
evenly distributed in order to provide a good configuration, 
reducing the risk of no convergence. 
The focal length of a virtual camera is 20mm, the size of image 
is 512×512, and the pixel size is 6 m × 6 m . The intrinsic 
matrix K is written as

20 0 1.536
0 20 1.536
0 0 1

 
   
  

K

 

(millimeter)

The coordinate reference is fixed on the camera, then the 
projective matrix is expressed as

20 0 1.536 0
0 20 1.536 0
0      0        1     0

 
   
  

P

We add some Gaussian noise on X respectively with 40dB 
signal noise ratio (SNR) and 20dB. So the covariance of X is 

computed by
SNR

51 10
 

   
 

X I , where I is an identity matrix. 

For the distortion of lens, 1k is assigned to be -0.2535 and 2k is 
0.1187. The measurements of X is illustrated as Figure 1. 
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Figure 1. The measurements of noisy ground points X .
If it is attempted to locate the corner of one image, whose 
accurate position is (-36.72,-36.72, 480) (meter). Then, the 
deduced positions from four models are listed in Table 1. ( lX ,

lY , lZ ) represents the estimated position, ( lX , lY , lZ ) 

reflects the absolute deviation from the true value. 
lX ,

lY ,

lZ are the square roots of three diagonals of X , which are 
the metric of uncertainty.
From Table 1, the location precision of SNR 40dB is usually 
higher than that of SNR 20dB, which explains the impact of 
measurement errors on the location precision. The fourth 
model, (homography model) can give a similar result as that of 
the second model (simplified model without radial distortion). 
Since homography model is much easier to compute, without 
considering the depth values, it is reasonable to use this model 
to approximately locate the target in the planar terrain. Besides, 
the consequence of this experiment shows that the four models 
have good location performances.
In order to test the algorithm, we made some codes on Qt 
platform. Figure 2 demonstrates the appearance of target 
location program. The left window shows the aerial image, and 
the right window shows a digital map integrated with DEM 
data. The pixel marked by a red cross is the target in the aerial 
image, and its corresponding point in the map is calculated, 
marked by a green cross. So the geographical position is 
naturally obtained, displayed on the panel.

SNR =40dBMapping 
models lX /m lY /m lZ /m

lX /m
lY /m

lZ /m lX /m lY /m lZ /m

1 -35.831 -35.749 479.35 0.1856 0.1842 0.0837 0.86 0.971 0.65
2 -36.733 -36.526 476.80 1.7834e-3 1.7819e-3 2.9283e-3 0.013 0.194 3.2
3 -36.508 -36.491 477.07 1.7788e-3 1.7734e-3 3.1837e-3 0.212 0.229 2.93
4 -38.048 -37.909 - 0.0135e-3 0.0136e-3 - 1.549 0.317 -

SNR =20dB

lX /m lY /m lZ /m
lX /m

lY /m
lZ /m lX /m lY /m lZ /m

1 -37.008 -36.357 502.37 1.7987e-3 1.7857e-3 2.7765e-3 0.288 0.363 30.37
2 -36.219 -36.329 504.98 0.1852 0.1858 0.1689 0.501 0.391 24.98
3 -38.485 -36.927 499.24 0.1762 0.1777 0.3455 1.765 0.207 19.24
4 -37.58 -36.852 - 1.2096e-3 1.2805e-3 - 0.86 0.132 -

Table 1. The deduced positions from four mapping models and their location errors
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Figure 2. The appearance of location program.

5.  CONCLUSIONS

This paper presents a pipeline of target location, in which the 
mapping model fits the transformation of correspondences, 
respectively from the aerial image and digital map. According 
to the diversity of unknown parameters, three forms of 
mapping models are discussed in detail, which could be 
suitable for different types of terrains. The associated error 
analysis is also elaborated, involving the location error of 
transferred target point. From the results of synthetic 
experiments, the positioning error is considerably small. Hence, 
this target-location strategy based on rich and high-precision 
data of digital maps is effective and economical for low-cost 
UAVs, even not equipped with high-performance platforms 
and POS.
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