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ABSTRACT:

Unmixing-based Denoising is a recently defined method which exploits spectral unmixing to recover bands characterized by a low
Signal-to-Noise Ratio in a hyperspectral scene. The output of the unmixing process, which aims at decomposing each image element
in signals typically related to pure materials, is inferred into the pixelwise reconstruction of a given band, ignoring the residual vector
which is mainly characterized by undesired atmospheric influences and sensor-induced noise. The reconstructed images exhibit both
high visual quality and reduced spectral distortions. This paper analyses the main problems that must be taken into account when
applying this technique to real data. Special attention is given to the reference spectra used in the linear mixing model, which should
be selected in order to keep the informational content of a given band unaltered in the reconstruction step.

1 INTRODUCTION

The spectral range characterizing data acquired by state-of-the-
art hyperspectral sensors mostly spans the frequencies between
400 nm and 2500 nm. Some bands are related to frequencies
which are mostly absorbed by the atmosphere, such as the ones
in the near-ultraviolet and blue portions of the spectrum. As the
sensor receives a low energy signal at such frequencies, these are
typically characterized by a low Signal to Noise Ratio (SNR).
On the other hand, at other frequencies sensor-induced noise be-
comes predominant. As a consequence, these bands are often
discarded in a preprocessing step common to most practical ap-
plications. For some tasks, it would be desirable to keep such
spectral information to better estimate some specific parameters
from the data.

Spectral unmixing (Bioucas-Dias et al., 2012) and denoising of
hyperspectral images (Renard et al., 2008) have always been re-
garded as separate problems. By considering the physical prop-
erties of a mixed spectrum, Unmixing-based Denoising has been
recentely introduced in (Cerra et al., 2013b) as a methodology
representing any pixel as a linear combination of reference spec-
tra in a hyperspectral scene. As the residual vector from the un-
mixing process is largely due to atmospheric interferences and
instrument-induced noise, we can reconstruct each pixel ignoring
the residual vector, and along with it most of the noise affecting
each pixel.

As the quality of the denoised image will greatly depend on the
adopted mixing model, distortions introduced by imperfections
in the model should be kept to a minimum, and several problems
arise when applying this technique to real data. To begin with,
noise may be present in the very spectra used as a basis for spec-
tral unmixing: to avoid this, spectra which are similar accord-
ing to given criteria can be averaged to reduce noise influences.
Furthermore, different samples of the same material may present
subtle differences in terms of spectral response, which should be
captured in the model. Finally, it is important to use a set of spec-
tra which allows a complete representation of the informational
content of a given band in a scene. This paper proposes an algo-
rithm to tackle this problem by iteratively adding spectra to the
model: these are chosen according to the distortions in the re-
constructed image, whenever these deviate significantly from the

typical random noise distribution. Experiments show that the pro-
posed method can effectively retrieve information from corrupted
bands characterized by a low SNR which are usually discarded,
and could be useful to derive indices and parameters for specific
applications.

The paper is structured as follows. Section 2 introduces Unmixing-
based Denoising, while Section 3 illustrates the main challenges
faced when using this algorithm in practical applications and how
to tackle them. We conclude in Section 4.

2 UNMIXING-BASED DENOISING

The Unmixing-based Denoising (UBD) is a simple procedure
which can be described as follows. Given a training dataset con-
taining n spectra, homogeneous to some degree, from each of
k materials, a set of reference spectral signatures is defined as
A = {z1,...,2i,..., 2k}, where z; is the average of the n
spectra belonging to material ¢. Considering the mean value for
a given reference spectrum reduces the presence of noise to a
minimum, if each class is spectrally homogeneous. It must be re-
marked that no assumption on the purity of the reference spectra
is made. Then, for each hyperspectral image element m with p
bands, with p << k, any unmixing procedure can be employed
to decompose m in a combination of the reference spectra. If we
assume this to be linear, we have:

k
m:Zl’isi—Fr, (1)
i=1

where s; is the fraction or abundance of the reference spectrum
¢ in m, and r the residual vector. The latter is mostly composed
by errors in the model and noise. The errors derive from contri-
butions related to materials not present in A, subtle variations of
one or more materials in A, noise affecting the selected reference
spectra, and non-linear mixing effects. The noise mostly comes
from fluctuations in the pixel values due to the low SNR in some
bands caused by atmospheric absorption, and instrument-induced
noise. If the modelling errors in A are kept to a minimum, we ex-
pect the noise term to be predominant in the residual vector for
bands with low SNR, and we can derive a reconstruction 7 as:
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Figure 1: Results on synthetic dataset with perfect model avail-
able. From top left: (a) Band 40 from fractals synthetic dataset,
heavily corrupted (SNR=10); (b) Band 40 without noise, ideal
target; (c) Image (b) restored from (a) through UBD using the 9
original spectra; (d) Difference image obtained subtracting image
(c) from image (a).
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ignoring r, and along with it most of the noise affecting m. The
described procedure is based on the assumption that if the contri-
butions to the radiation reflected from a resolution cell are known,
the value of noisy bands in that area can be derived by a combina-
tion of the average values characterizing each component in that
spectral range. The method needs as input a set of spectra that
well characterize the scene, and is carried out independently for
each pixel. As a certain homogeneity of the classes of interest
is assumed, the method is expected to perform better on natural
scenes where man-made objects (usually having a higher vari-
ability) are not prevalent.

3 ITERATIVE REFERENCE SPECTRA SELECTION

The results obtained with the UBD method as illustrated in sec-
tion 2 are dependent on the quality of the linear mixing model
used. This section illustrates which results can be expected in
an ideal case, and what can be done to mitigate the distortions
introduced by errors in the adopted model. Special attention is
given on how to include in the model all relevant spectra useful
to recover a given band in a scene. In the following experiments
we choose Non-negative Least Squares (NNLS) as unmixing al-
gorithm (Bioucas-Dias et al., 2012).

3.1 Anideal case

In an ideal case, we have a perfect model comprising all the spec-
tra related to materials within the scene, all such spectra are noise-
free and there are no subtle variations within a given material in
terms of percentage of scattered energy at a given wavelength.
To understand how the algorithm would work in such a case, we
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Figure 2: Workflow for the reported algorithm. The iterations up-
date the set of reference spectra to be employed in the linear mix-
ing model, keeping as much information as possible in a given
noisy band and discarding all noise contributions.

apply UBD to a synthetic hyperspectral dataset by J. Plaza et al.
(Plaza et al., 2012), available at (Plaza and Plaza, 2012). The
dataset includes images composed by mixtures of 9 known pure
spectral signatures with different noise levels (SNR ranging from
10 to 0o0). The spectra are selected from the USGS spectral li-
brary (Clark et al., 2007), and the images are of size 100 x 100
pixels and have 221 bands between 0.4 and 2.5 pum.

We consider the image with the worse SNR which is 10, and try
to reconstruct the noise-free image from the noisy one, given the
original noise-free spectra used to generate the target image, as
in eq. 2. Results in fig. 1 show that, in spite of the high noise
power, the target image is retrieved almost perfectly. As objective
evaluation parameters we compute the average Normalized Root
Mean Square Error (NRMSE) and the average Spectral Angle
(SA) value, between the two images. The former is expressed in
percentage as:

ZT,; (zi—y:)?

NRMSE(z,y) = ~——-2——| 3)

Tmazx — Tmin

With Z.,42 and Tmin being the highest and lowest values assumed
by z respectively, and the numerator the root of the mean squared
error over n samples. The SA, which measures the angle between
two vectors representing two spectra. It is defined as the arcco-
sine of the dot-product between two vectors x and y as (Kruse,
1993):
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In this case after reconstruction the NMSE is 2.4%, while the
average SA value is as low as 0.0346.
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Figure 3: Sample steps from the iterative reference spectra selection. The reported images show the reconstruction error in a sample
band at 434 nm, after a low-pass filtering carried out in the frequency domain. Red and dark blue areas correspond to high errors and

to errors close to 0, respectively.

3.2 Real cases

In a real case the mixing model is generally unknown, along with
the noise power and its distribution. Assuming non-linear mixing
phenomenons to be negligible (Keshava and Mustard, 2002), the
three main problems are: noisy reference spectra used as basis for
the unmixing step, subtle variations of the same material which
are not captured in the unmixing model, and missing spectra in
the model. We briefly illustrate how to deal with these problems,
with special attention to the last one.

The problem of noise presence in the basis used for the unmix-
ing step can be strongly mitigated by considering each spectrum
as the average of several similar signals. We assume the noise to
be additive white Gaussian with zero mean, and signal-dependent
noise to be negligible (Aiazzi et al., 2006). Whenever a spectrum
is included into the model, the average values for each wave-
length in a homogeneous area can be considered. This way, the
mean of the noise in the considered spectra will be close to 0, and
the typical values for a spectrum in bands affected by low SNR
will be reliable. If no such area can be found, the average spec-
trum can be computed using the spectra in the image which are
the most similar to the initial one, and minimizes the SA between
the two. Note that we are assuming that, for a given material, it is
possible to identify several pixels in the image which are macro-
scopically pure up to a certain degree. This also implies that we
are not looking specifically for pure materials or endmembers, as
also intimate mixtures represent valid candidates.

About the subtle variations within each material, nothing can be
done if these cannot be expressed as linear combinations of the
reference spectra used as basis for the unmixing step. This is
a limitation of the method but it can be solved by considering
different samples for the same material, which can in turn be
mixed to obtain several intermediate states for the spectral re-
sponse of any image element. This is done under the assumption
that adding a spectrum which only slightly differs from one al-
ready present in the model does not make the system unstable,
i.e. does not cause one of the reference spectra to be linearly
dependent from the others. This would introduce non-negligible
numerical errors in the unmixing step, which requires the inver-
sion of the matrix composed by the reference spectra.

This section mainly deals with the last of the described problems:
finding all the spectra in the image which are needed to recon-
struct an image discarding only its random noise component but
keeping all relevant information in bands affected by low SNR.
We could use any endmember extraction algorithm to retrieve the
spectra which can at best represent the contents of a scene, but
these would be driven by the full spectral information of a given
image element, and would therefore implicitly give less impor-
tance to variations in bands with low SNR. As these are exactly

the ones we want to retrieve, traditional endmember extraction
algorithms are not fit to derive a model focused at keeping all the
relevant information in these bands. Instead, we propose to use
the following algorithm to retrieve the reference spectra which
are useful to reconstruct one of such bands, for which the work-
flow is sketched in fig. 2.

First of all, the set of reference spectra must be initialized. For
this purpose, traditional algorithms which perform a rotation of
the original data in a hyperplane with orthogonal components
can be applied, such as Principal Components Analysis (PCA)
(Kaewpijit et al., 2003) or Minimum Noise Fraction (MNF) (Am-
ato et al., 2009) can be used. Selecting the extreme points in the
space spanned by the first two dimensions in such spaces makes
sure that the spectral information they convey is as uncorrelated
as possible. In this way, 4 spectra can be selected to form the
starting model for the unmixing algorithm.

Afterwards, an iterative reference spectra refinement method is
carried out. In each step, the UBD algorithm is applied with the
current mixing model, yielding a reconstructed image which will
have at first high distortions with respect to the original one. At
this point, the noisy band which is useful for a given application
is selected, and an error image is generated by subtracting it from
the original noisy band. The resulting error image will be com-
posed by random noise and diffuse errors which are linked to the
relevant information we lost by representing the image as a linear
mixture of too few reference spectra. To separate these two com-
ponents, the error image is filtered in the frequency domain with
a Butterworth low-pass filter, yielding an error image containing
only errors which are diffuse over an area. A filtered error image
is of the kind reported in fig. 3. At this point, a new spectrum is
selected from the area with maximum error and averaged over its
neighbours (or similar pixels if the area is not homogeneous) to
reduce noise contributions. The spectrum is added to the model
and a new iteration takes place. As new spectra are added to
the model, the error in the reconstructed image decreases: fig.
3 shows an example of the different outcomes of several itera-
tions on the band at 434 nm from a hyperspectral scene acquired
by the HySpex sensor over the lake Starnberg in Germany. The
original band is reported along with its final denoised version in
figs. 4 and 5. In the processing the land and part of the boats
have been masked out for computational efficiency reasons, as
the main motivation for denoising this particular band is its util-
ity in estimating the concentration of Coloured dissolved organic
matter (CDOM) in natural waters, which is often carried out us-
ing information at different wavelengths, given the low SNR of
some bands in the blue portion of the spectrum (Kutser et al.,
2005). After applying UBD, the retrieved CDOM parameters are
closer to their actual values (Cerra et al., 2013a).
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Figure 4: Band 6 from the Starnberger lake dataset (434 nm).

4 CONCLUSIONS AND FUTURE WORK

Unmixing-based Denoising (UBD) is a supervised methodology
for the recovery of bands characterized by a low Signal-to-Noise
Ratio (SNR) in a hyperspectral scene. UBD reconstructs any
pixel in a given band as a linear combination of reference spectra
belonging to materials present in the scene. As the residual vector
from the unmixing process is mostly composed by contributions
of uninteresting materials, unwanted atmospheric influences and
sensor-induced noise, this is ignored in the reconstruction pro-
cess.

This paper focuses on how to include in the linear mixing model
all relevant reference spectra to maximize the information which
is kept in a given spectral band. The main problem when adopting
this approach is deciding the stop criterion. In this work a thresh-
old has been set as the maximum value which is allowed for an
error image after a low-pass filtering in frequency, but several
different criteria could be chosen. For example, spectra could be
added until they are linearly independent regardless of the high-
est value in the error image. Or the virtual dimensionality of the
dataset could be estimated (Bioucas-Dias and Nascimento, 2008),
and the process could stop when the same number of reference
spectra is collected.

The proposed method could be applied to retrieve important in-
formation in noisy bands for a wide array of practical applica-
tions. Examples include: estimation of Leaf Clorophyll Content
and vegetation stress for given kinds of crops, estimation of oil
thickness in oil spill applications, estimation of CDOM in open
waters, and vegetation damage severity index after forest fires.
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