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ABSTRACT: 

 

Several algorithms have been proposed in the literature to invert radar measurements to estimate surface soil moisture. The objective 

of this paper is to compare the performance of the most common surface back scattering models including the theoretical integral 

equation model (IEM) of Fung et al(1992)., and the semi-empirical models of Oh et al (1992, 1994, 2002 and2004). and Dubois et al 

(1995).. This analysis uses four AIRSAR data in L and C band together with in situ measurements (soil moisture and surface 

roughness) over bare soil and vegetation covers area and three different soil depths. The results show that Dubois model tend to 

over-estimate the radar response in both bands while IEM model and Oh model frequently over-estimate the radar response in L 

band but under-estimate them in C band. By evaluating of all models in different soil depths, the best results were obtained in 0-3 cm 

depths. For vegetation area poor correlation between models backscatter simulation and radar response was observed. 

   

 

1. Introduction 

Soil moisture is an important parameter in many applications 

such as hydrology, agriculture, risk prediction and  climate 

studies (Alvarez-Mozos et al., 2005; Beljaars et al., 1996; 

Georgakakos et al., 1996). Due to the high dependence of the 

microwave dielectric constant on soil water content, there is a 

high correlation between the radar backscattering coefficient 

and soil moisture (Panciera et al., 2009; Srivastava et al., 2009). 

Accordingly, much research has been done in the past to 

estimate soil moisture using Synthetic Aperture Radar (SAR) 

images ( Ulaby et al., 1996; Zribi et al., 2008;; Song et al., 

2009) and different empirical, semi-empirical, and theoretical 

soil moisture estimation models have been developed (Atemma 

and Ulaby, 1978; Oh et al., 1992; Fung et al.,). Among the 

numerous semi-empirical models reported in the literature the 

most popular ones are those developed by Oh (Oh et al. 1992, 

1994, 2002, Oh 2004) and Dubois et al. (1995). The Oh model 

uses the ratios of the measured backscatter coefficients 

0 0/p
HH VV

    and 0 0/p
HV VV

   , and cross-polarized 

backscatter coefficient 
0
HV

  to estimate volumetric soil 

moisture and surface roughness, while the Dubois model links 

the backscatter coefficients in HH and VV polarizations to the 

soil’s dielectric constant and surface roughness. The physical 

approach uses theoretical models that predict the radar 

backscatter coefficient from radar parameters and soil 

characteristics. The physical models provide site-independent 

relationships, but have limited roughness domains. The integral 

equation model (IEM) (Fung et al. 1992) is the most commonly 

used physical model in inversion procedures for the retrieval of 

soil moisture and/or roughness parameters. 

Extensive studies have evaluated various models, but 

conflicting results have been obtained. Some studies have 

shown good agreement between measured backscatter 

coefficients (Rakotoarivony et al. 1996, Zribi et al. 1997, 

Satalino et al. 2002) and those predicted by the models, while 

others have found great discrepancies between them (Shi et al. 

1997, Bindlish and Barros 2000,  Baghdadi et al. 2004). The 

objective of this research is to evaluate and compare the 

accuracies of the three most popular models used in inversion 

procedures (the Oh, Dubois and IEM models) using L and C 

bands over different soil depths and vegetation canopy cover. 

 

2. Database 

2.1.  Study area 

The study area is located in southwest Oklahoma in the 

Southern Great Plains region of the United States and covers an 

area of 611 sq. km. The Little Washita Experimental Watershed 

(LWREW) is the focus of the Southern part of Oklahoma (OS) 

which is dominated by grassland. The location of these regions 

is shown in Figure 1, which is a Landsat-5 TM images collected 

on 10 July 2003. Figure 1 shows a combination of bands 4, 3, 

and 2 as the red, green, and blue channels. Red, white, and blue 

pixels indicate vegetation, bare soil, and dormant or senescent 

vegetation, respectively. The specifications of the study area are 

shown in Table 1. 

2.2.  Field data 

 

The data used in this study is the Soil Moisture Experiments 

(SMEX03) data set that was gathered on 10 June 2003.  
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Study Site Location 
 

Vegetation topography 
Range of mv 

(%) 

Range of rms 

(cm) 

Little Washita Watershed 

Corner NW 35.01 N 
rangeland and 

pasture (63%) with 

significant areas of 

winter wheat 

moderately 

rolling 
0.7 – 28.8 0.6592- 2.0927 

 98.03 W 

Corner SE 34.75 N 

 97.89 W 

Table 1. Study area 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling was performed on sites approximately one-quarter 

section, 0.8 km by 0.8 km, in size. Soil samples were collected 

and soil temperature, surface temperature, soil dielectric 

constants were measured. In each site, soil moisture at 0-6 cm 

soil depth was measured using theta probe (TP). Also, at the 

time of sampling, a sampling tool was used to extract VSM and 

bulk density (BD) of 0-3 cm and 3-6cm soil depth layers. The 

little Washita watershed dataset contains 13 sites and 54 points 

in all these sites. From total 54 sample points, 16 points have 

NDVI values in the range of 0-0.2 and 16 points have NDVI 

values in the range of 0.2-0.4 and 20 points have NDVI values 

in the range of 0.4-0.6. A 1 m roughness tablet was used to 

measure surface roughness. First the grid board was placed on 

soil vertically and a photo was taken. Then using these photos 

surface heights were digitized  

 

at about 0.5 cm intervals, and then the root mean squared height 

( hrms ) parameter was calculated: 

(http://nsidc.org/data/docs/daac/nsidc0345_smex03_ancillary_s

urface_roughness/index.html) 

1 2 1/2( (Z ) )

1

n
h Zrms i

ni

 


    (1) 

  

Where n is the number of measurements of the height, Zi is a 

single measurement, and Z is the mean of the measurements. 

To determine the correlation length and the correlation length 

function, the surface autocorrelation curve was computed. Once 

the autocorrelation curve has been computed, the correlation 

length can be determined. The correlation length is defined as 

the distance (d) at which the autocorrelation is less than 1e . The 

correlation length can then be used to fit the theoretical 

correlation function to the measured autocorrelation curve by 

optimizing the power coefficient (n). 

 

2.3. Satellite data 

In this study four Airborne Synthetic Aperture Radar (AIRSAR) 

images were used. AIRSAR is side-looking airborne radar and 

its data is in Stokes matrix format with a pixel size of 6.66 m in 

range and 9.26 m in azimuth. The incidence angle varies 

between 20° and 70°. The images were taken in polarimetric 

mode (POLSAR) and are used to produce SMEX03. In this 

mode data is collected in three frequencies C, L, and P and in 

four different polarizations HH, VV, HV, and TP (total power). 

The data used in this research were acquired in frequency L and 

C and polarization HH, HV, and VV. One Landsat-5 TM 

images were also used in this research. SAR and optical images 

were acquired 10 June 2003. 

 

3. Description of scattering models 

 

3.1.  The Integral equation model 

The IEM is a theoretical backscattering model applicable to a 

wide range of roughness values (Fung et al. 1992). The 

backscatter coefficient of the surface contribution is expressed 

as: 

 
2

2
0 2 2 2

1

( 2k ,0)
exp( 2k )

2 !

n
n n x

pq z pq

n

k W
I

n
  






      (2) 

 

With 

2 2
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2
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I f 

 
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Figure 1. Landsat-5 TM  image showing the general 

locations of the study region. 
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Where k is the radar wave number, 
Zk  is equal to cosk  , θ is 

the radar angle of incidence, σ is the standard deviation of 

surface height, 
r  is the relative permittivity (relative dielectric 

constant ) of the soil, 
r  is the relative permeability and 

||R  

and R
 are the vertically and horizontally polarized Fresnel 

reflection coefficient, respectively. pq is the co-polarization  or 

cross-polarization (HH, VV and HV). (k ,k )n

x yW  is the Fourier 

transform of the nth power of the surface correlation function.  

The surface correlation function (x,y)  with exponential 

distribution is given by ρ(x,y) = exp { ( ) / L}x y   and 

surface correlation with Gaussian distribution is given by  ρ(x,y) 

= 2 2 2exp { (x ) / L }y   . Here, L is correlation length. In this 

study both of these correlation functions were examined and the 

results of exponential auto correlation function were much 

better than Gaussian auto correlation function. There for we use 

exponential auto correlation function in this study.  

 

3.2. The semi-empirical Dubois model 

Dubois et al. (1995) suggested a semi-empirical approach for 

modelling 0

HH  and 0

VV  radar backscatter coefficients, using 

scatterometer data. The expressions for 0

HH  and 0

VV  involve 

the angle of incidence (θ), the dielectric constant (
r ), the 

standard deviation of surface height (
rmsh  ) and the wavelength 

(λ= 2π/k, in cm): 

 
1.5

0.028. . tan0 2.75 1.4 0.7

5

cos
10 ( )10 (k.h .sin )

sin
r

HH rms

 
  



   (9) 

3
0.046. . tan0 2.35 1.1 0.7

3

cos
10 ( )10 (k.h .sin )

sin
r

VV rms

 
  



   (10) 

 

The algorithm is optimized for bare soils with 

. 2.5rmsk h  , 35%mv   and 30    (Dubois et al. 1995). 

 

3.3. The semi-empirical Oh model 

Oh (Oh et al. 1992, 1994, 2002, Oh 2004) developed a semi-

empirical backscattering model based on theoretical models, 

scatterometer measurements and airborne SAR observations 

over a wide variety of bare soil surfaces. The model relates the 

co-polarized ratio p = 0 0/HH VV    and the cross-polarized ratio q 

= 0 0/HV VV  to incident angle (θ), wave number (k), standard 

deviation of surface height (
rmsh ) and volumetric soil moisture 

(mv). The initial version of the Oh model was presented by Oh 

et al. (1992): 

 

01/3 .0 0 2/ [1 ( ) e ]
90

rmsk h

HH VVp


     


    (12) 

.0 0

0/ 0.23 (1 e )rmsk h

HV VVq   
       (13) 

 

Where 

2

0

1

1

r

r






 


      (14) 

 

A new expression for q was proposed by Oh et al. (1994) to 

incorporate the effect of the incidence angle: 

 

0[1.4 1.6 ] .0 0 0.9

0/ 0.25 (0.1 sin )(1 e )rmsk h

HV VVq      
       (15) 

 

The expressions for p and q were again modified in 2002, and 

an expression was proposed for the cross-polarized backscatter 

coefficient (Oh et al. 2002): 

 

1.40.65 0.4(k .h )0.35.1 ( )
90

rmsmvp e
   


    (16) 

0.80.9(k .h )1.20.1( sin1.3 ) (1 e )rmsrmsh
q

L
       (17) 

1.80.32(k.h )0 0.7 2.20.11 cos (1 e )rms

HV mv  
     (18) 

 

Given that the measurement of the correlation length is not 

exact (Oh and Kay 1998, Baghdadi et al. 2000) and that the 

ratio q is insensitive to the roughness parameter (rms/L), Oh 

(2004) proposed a new formulation for q that ignores the 

correlation length: 

 
1.3(k.h )0.91.40.095(0.13 sin1.5 ) (1 e )rmsq       

 

The algorithm is optimized for bare soils with 0.1 . 2.5rmsk h  , 

9% 31%mv   and 10 70     (Oh et al. 1994). 

 

4. Comparison between modeled and measured data 

The performance of each scattering model is evaluated using the 

statistical indexes suggested by Willmott (1992): 

 

Root mean square error 

 

2

1

1
(P )

N

i i

i

RMSE O
N 

       (19) 

 

Bias 

 

1
(O P )i iBias

N
        (20) 

 

Here P is the model-predicted variable, O the observed variable 

and N the data number.  

Figures 2a, b and c present the IEM model results in L and C 

band for HH and VV polarization and figures 2d, e and f 

present the Dubois model results in L and C band for back 

scatter coefficients 0

HH and 0

VV , and finally figures 2g, h, i 

and j present the Oh model results in L and C band for back 

scatter coefficients p = 0 0/HH VV    , q = 0 0/HV VV   and 0

HV  

from 1992, 1994, 2002 and 2004 version. 
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5. Discussion 

 

5.1. Evaluation of the IEM model 

 

In this study the backscatter coefficients of IEM model were 

simulated in L and C band and HH and VV polarization over 

three different vegetation canopy covers and three different soil 

depths. The results obtained show that IEM model is frequently 

tended to under-estimate  the radar signal in C band (Figure 2a , 

b) and over-estimate it in L band (Figure 2a, b). Figure 2b 

shows that errors obtained in L band are much smaller than 

those obtained in C band (RMSE = 5.982 dB for L band and 

8.501 dB for C band) and also figure 2c shows that in L band 

the HH backscatter results were more precise than VV 

backscatter (RMSE = 2.82 dB for HH and 5.982 dB for VV). 

Examination of this model in three different soil depth (0-3 cm 

,3-6 cm and 0-6 cm) shows that the best results are related to 0-

3 cm soil depth followed by  0-6 cm soil depth. The 3-6 cm soil 

depth results shows the weakest correlation. As an example for 

L band and VV polarization in different soil depths the RMSE 

values are equal to 5.982 dB for 0-3 cm, 7.007 dB for 0-6 cm 

and 7.859 dB for 3-6 cm. The results of C band in different soil 

depth shows that this band cannot simulate backscatter in depth 

more than 0-3 cm due to its small wavelength and in depths 

such as 0-6 cm or 3-6 cm errors are too large. (RMSE = 8.501 

dB in 0-3 cm, 53.803 dB in 3-6 cm and 48.953 dB in 06 cm). 

This model also examined in different vegetation canopy covers 

and for this purpose Normal Differences Vegetation Index 

(NDVI) was used. All backscatters in L and C band were 

simulated in three different NDVI (NDVI ≤ 0.2, 0.2 < NDVI ≤ 

0.4 and 0.4 < NDVI ≤ 0.6). The results obtained show that in 

both bands and all backscatters the best results are related to 

bare soil area with NDVI ≤ 0.2 and after that for 0.2 < NDVI ≤ 

0.4 and  finally 0.4 < NDVI ≤ 0.6. For example in L band and 

HH polarization the rms error is about 5.982 dB for NDVI ≤ 

0.2, 6.253 dB for 0.2 < NDVI ≤ 0.4 and 8.185 dB for 0.4 < 

NDVI ≤ 0.6. These results have been expected since in the IEM 

model there is no parameter to model the impact of vegetation 

cover. Therefore in order to estimate soil moisture with this 

model in area with vegetation cover propose that impact of 

vegetation cover omit from the radar backscatter before suing 

this model. 

 

5.2. Evaluation of the Dubois model 

 

In this study the backscatter coefficients of Dubois model 

namely 0

HH  and 0

VV  were simulated in L and C band over two 

different vegetation canopy covers and three different soil 

depths. Generally speaking, the Dubois model tends to over-

estimate the radar signal in all bands and backscatters (figure 

2(d), (e) and (f)). Results obtained show that in C band the 

Dubois model agrees closely to the measured data than L band 

and also the errors obtained in VV polarization are smaller than 

those observed in HH polarization in both bands (Figure 2(e) 

and (f)). Thus the best results obtained in C band and VV 

polarization (RMSE = 5.055 dB). Examination of this model in 

three different soil depth (0-3 cm, 3-6 cm and 0-6 cm) shows 

the same behaviour as IEM model that the best results are 

related to 0-3 cm and then 0-6 cm and finally 3-6 cm. (RMSE 

for C band and VV polarization in 0-3 cm = 5.055 dB, 0-6 cm = 

5.826 dB and 3-6 cm = 6.563 dB). This model was suggested by 

Dubois et al. (1995) for bare surface however they suggested 

that the inversion  of  their algorithm could be applied to 

surfaces with NDVI  as high as  0.4.(Dubois et al. (1995)). 

Therefor in this research the Dubois model was examined under 

two vegetation canopy cover. The results obtained show that the 

both HH and VV backscatters in C band and the VV 

backscatter in L band were simulated more precisely in bare soil 

area with NDVI ≤ 0.2 that in area with moderate vegetation 

cover 0.2 < NDVI ≤ 0.4.However the HH backscatter in L band 

was simulated more precisely in area with 0.2 < NDVI ≤ 0.4 

than in bare soil area with NDVI ≤ 0.2. 

 

5.3.  Evaluation of the OH model 

 

In this study the all backscatter coefficients of OH model which 

had been developed since 1992 to 2002 were simulated in L and 

C band over three different soil depths. The Oh model tends to 

over-estimate the radar signal in C bands except for backscatter 

coefficient  0

HV  (Figure 2(h) and (i)) but in L band OH model 

mostly tends to under-estimate the radar signal except for ratio 

q from the 1994 and 2002 version (Figure 2(g) and (i)). Figure 

2(i) shows that ratio p from the 1992 and 2002 version can 

simulate radar signal in L band better  than in C band (RMSE = 

1.337059418 dB for ratio p in L band and 2.025981843 dB in C 

band), and the best result of ratio p obtained in L band and from 

the 2002 version. However in C band ratio p is slightly better in 

the 1992 version than the 2002 version (Figure 2(i)). Other 

results for ratio q illustrate that this ratio can estimate radar 

backscatter mostly better in C band rather than L band (Figure 

2(g), (h)). For example all cross-polarized ratio q results for 

1992, 2002 and 2004 version in C band were more precise than 

those in L band. The results obtained from the backscatter 

coefficient 0

HV  show that this coefficient was over-estimated 

by the Oh model in L band and under-estimated by this model 

in C band (Figure 2(j)). More over the errors obtained for this 

coefficient in C band are smaller than those obtained in L band 

(RMSE = 3.255276629 dB in C band and 4.417182609 dB in L 

band). Examination of this model in three different soil depths 

(0-3 cm ,3-6 cm and 0-6 cm) shows that the best results  mostly 

are related to 0-3 cm soil depth and after that to 0-6 cm soil 

depth and finally to the 3-6 cm soil depth  However, the ratio q 

from the 1994 ratio in just C band show completely different 

behaviour. For this ratios the best result are related to 3-6 cm 

soil depth, after that to the 0-6 cm soil depth and finally to the 

0-3 cm soil depth. However our data base is not big enough to 

for a detailed study of the behaviour of this error. 

 

6. Conclusion 

The objective of this article is to evaluate the semi-empirical 

models of Oh and Dubois and the theoretical integral equation 

model (IEM) using L and C-bands with ground measurements 

over vegetation cover and bare soli in agricultural environments 

and different soil depths. The results show that Dubois model 

tend to over-estimate the radar response in both bands but IEM 

model and Oh model frequently over-estimate the radar 

response in L band and under-estimate them in C band. As 

mentioned earlier, by examination of models in different soil 

depths and vegetation canopy covers, best results obtained in 0-

3 cm depths and area with NDVI  0.2. 

 

7. References: 

 

Alvarez-Mozos, J., Casali, J., Gonzalez-Audicana, M., and 

Verhoest, N.E.C. 2005. Correlation between ground measured 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W3, 2013
SMPR 2013, 5 – 8 October 2013, Tehran, Iran

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 229



`` 

soil moisture and RADARSAT-1 derived backscattering 

coefficient over an agricultural catchment of Navarre (North of 

Spain). Biosystems Engineering, Vol. 92, No. 1, pp. 119�133. 

doi: 10.1016/j.biosystemseng.2005.06.008. 

 

Atemma, E.P., and Ulaby, F.T. 1978. Vegetation modeled as 

water cloud.Radio Science, Vol. 13, No. 2, pp. 357�364. doi: 

10.1029/RS013i002 p00357. 

 

Baghdadi, N., Gherboudj, I., Zribi, M., Sahebi, M., Bonn, F. 

and King, C., 2004, Semi-empirical calibration of the IEM 

backscattering model using radar images and moisture and 

roughness field measurements. International Journal of Remote 

Sensing, 25, pp. 3593–3623. 

 

Baghdadi, N., and Zribi, M. (2006) 'Evaluation of radar 

backscatter models IEM, OH and Dubois using experimental 

observations', International Journal of Remote Sensing, 27: 18, 

3831 — 3852 

 

Beljaars, A., Viterbo, P., Miller, M., and Betts, A. 1996. The 

anomalous rainfall over the United States during July 1993: 

sensitivity to land surface parameterization and soil moisture 

anomalies. Monthly Weather Reviews, Vol. 124, No. 3, pp. 

362�383. 

 

 

Bindlish, R. and Barros, A.P., 2000, Multifrequency soil 

moisture inversion from SAR measurements with the use of 

IEM. Remote Sensing of Environment, 71, pp. 67–88. 

 

Dubois, P.C., van Zyl, J., and Engman, T. 1995. Measuring soil 

moisture with imaging radar. IEEE Transactions on Geoscience 

and Remote Sensing, Vol. 33, No. 6, pp. 915�926. doi: 

10.1109/TGRS.1995.477194. 

 

Fung, A.K., Li, Z., and Chen, K.S. 1992. Backscattering from a 

randomly rough dielectric surface. IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 30, No. 2, 356�369. doi: 

10.1109/36.134085. 

 

Georgakakos, K.P., Guetter, A.K., and Sperfslage J.A. 1996. 

Estimation of flash flood potential for large areas. In Destructive 

Water: Water-Caused Natural Disasters, their Abatement and 

Control. Edited by G.H. Leavesley, H.F. Lins, F. Nobilis, R.S. 

Parker, V.R. Schneider and F.H.M. van de Ven. IAHS, 

California. pp. 87�93. 

 

Hallikainen, M., Ulaby, F., Dobson, F., Elrayes, M. and WU, 

L., 1985, Microwave dielectric behaviour of wet soil. Part I: 

empirical models and experimental observations. IEEE 

Transactions on Geoscience and Remote Sensing, 23, pp. 25–

34. 

 

Oh, Y., 2004, Quantitative retrieval of soil moisture content and 

surface roughness from multipolarized radar observations of 

bare soil surfaces. IEEE Transactions on Geoscience and 

Remote Sensing, 42, pp. 596–601. 

 

Oh, Y., Sarabandi, K. and Ulaby, F.T., 1992, An empirical 

model and an inversion technique for radar scattering from bare 

soil surfaces. IEEE Transactions on Geoscience and Remote 

Sensing, 30, pp. 370–382. 

 

Oh, Y., Sarabandi, K. and Ulaby, F.T., 1994, An inversion 

algorithm for retrieving soi moisture and surface roughness 

from polarimetric radar observation. Proceedings IGARSS’94, 

Pasadena, USA. IEEE catalog no. 94CH3378-7, III, pp. 1582–

1584, (New York: IEEE). 

 

Oh, Y., Sarabandi, K. and Ulaby, F.T., 2002, Semi-empirical 

model of the ensemble-averaged differential Mueller matrix for 

microwave backscattering from bare soil surfaces. IEEE 

Transactions on Geoscience and Remote Sensing, 40, pp. 1348–

1355. 

 

Panciera, R., Walker, J.P., and Merlin, O. 2009. Improved 

understanding of soil surface roughness parameterization for L-

band passive microwave soil moisture retrieval. IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 6, No. 4, 

pp. 625�629. doi: 10.1109/LGRS.2009.2013369. 

 

Rakotoarivony, L., Taconet, O., Vidal-madjar, D., Bellemain, P. 

and Benalle`gue, M., 1996, Radar backscattering over 

agricultural bare soils. Journal of Electromagnetic Waves and 

Applications, 10, pp. 187–209. 

 

Satalino, G., Mattia, F., Davidson, M.,Letoan, T., Pasquariello, 

G.and Borgeaud, M., 2002, On current limits of soil moisture 

retrieval from ERS-SAR data. IEEE Transactions on 

Geoscience and Remote Sensing, GE-24, pp. 2438–2447. 

 

Shi, J., Wang, J., Hsu, A.Y., O’neill, P.E. and Engman, E.T., 

1997, Estimation of bare surface soil moisture and surface 

roughness parameter using L-band SAR images data. IEEE 

Transactions on Geoscience and Remote Sensing, 33, pp. 915–

926. 

 

Srivastava, H.S., Patel, P., Sharma, Y., and Navalgund, R.R. 

2009. Large-area soil moisture estimation using multi-

incidence-angle RADARSAT-1 SAR data. IEEE Transactions 

on Geoscience Remote Sensing, Vol. 47, No. 8, pp. 

2528�2535. doi: 10.1109/TGRS.2009.2018448. 

 

Ulaby, F.T., Dubois, P.C., and van Zyl, J. 1996. Radar mapping 

of surface soil moisture. Journal of Hydrology, Vol. 184, Nos. 

1�2, pp. 57�84. doi: 10.1016/0022-1694(95)02968 

 

Willmott, C.J., 1992, Some comments on the evaluation of 

model performance. Bulletin American Meteorological Society, 

11, pp. 1309–1313. 

 

Zribi, M., Andre ´, C., and Decharme, B. 2008. A method for 

soil moisture estimation in western Africa based on the ERS 

scatterometer. IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 46, No. 2, pp. 438448. doi: 

10.1109/TGRS.2007.904582. 

 

Zribi, M., Taconet, O., Lehegarat-mascle, S., Vidal-madjar, D., 

Emblanch, C., Loumangne, C. and Normand, M., 1997, 

Backscattering behavior and simulation: Comparison over bare 

soils using SIR-C/X-SAR and ERASME 1994 data over 

Orgeval. Remote Sensing of Environment, 59, pp. 308–320. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W3, 2013
SMPR 2013, 5 – 8 October 2013, Tehran, Iran

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 230


