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ABSTRACT:

This paper proposes an algorithm for fusing digital surface models (DSM) obtained by heterogenous sensors. Based upon prior con-
fidence knowledge, each DSM can be weighted locally adaptively and therefore strengthen or lessen its influence on the fused result.
The proposed algorithm is based on variational methods of first and second order, minimizing a global energy functional comprising of
a data term forcing the resulting DSM being similar to all of the input height information and incorporating additional local smoothness
constraints. By applying these additional constraints in the form of favoring low gradients in the spatial direction, the surface model is
forced to be locally smooth and in contrast to simple mean or median based fusion of the height information, this global formulation of
context-awareness reduced the noise level of the result significantly. Minimization of the global energy functional is done with respect
to the L1 norm and therefore is robust to large height differences in the data, which preserves sharp edges and fine details in the fused
surface model, which again simple mean- and median-based methods are not able to do in comparable quality. Due to the convexity of
the framed energy functional, the solution furthermore is guaranteed to converge towards the global energy minimum. The accuracy
of the algorithms and the quality of the resulting fused surface models is evaluated using synthetic datasets and real world spaceborne
datasets from different optical satellite sensors.

1 INTRODUCTION

Digital surface models (DSM) are a basic component for many
applications, such as orthophoto creation, mapping, visualisa-
tion and 3D planing in many application fields. Today, many
technologies for DSM generation exist, such as airborne LiDAR,
SAR interferometry and automatic image matching, each result-
ing in a different quality and characteristics. As a result, multi-
ple datasets of DSMs are available for most parts of the earths
landmass and it is therefore interesting to fuse these into a sin-
gle, higher accuracy DSM. Depending on the underlying satellite
characteristics like ground sampling distance (GSD), the DSMs
capture different parts of the scene in different quality, which
even can be mutually exlusive to some extent. For example, high
resolution sensors like World-View 2 with a GSD of 0.5m per-
form very well in urban areas, whereas the results in forest areas
are somewhat moderate. In contrast, Cartosat-1 with a GSD of
2.5m performs quite opposite in these areas. Even with the same
sensor, a different exposure time can drastically alter the results
in shadow areas or in highly reflective areas like glaciers. Apart
from the obvious aspect of fusing multiple different DSMs, some
techniques produce multiple DSMs for the same area, which need
to be fused as well. For example, many multi-view image match-
ing techniques are based on matching individual stereo pairs and
later fusing these stereo pairs into a common height model, see
e.g. (Hirschmueller, 2008), (Kuschk, 2013), (Rumpler et al.,
n.d.).
Our work focuses on the fusion of 2.5D DSM grids, with a res-
olution from several decimeters to a few meters. DSM fusion
has been considered by various authors previously. The simplest
method is based on weighted averaging of two or more height
maps (Schultz et al., 1999), (Reinartz et al., 2005). As weighted
averaging cannot deal with outliers or blunders in the DSMs, a
median fusion is often used for multi-DSM fusion, sometimes
followed by weighted averaging of the inliers (Hirschmueller,
2008). Both median and weighted averaging does process each
pixel independently, and thus cannot take into account the local

surface shape, which is usually very regular. Applying additional
mean or median based filtering spatially reduces the amount of
noise to some extent, at the cost of blurring potentially sharp
edges. An example for context aware fusion algorithms is the use
of sparse representations (Papasaika et al., 2011), where a DSM
patch is computed as a sparse linear combination of dictionary
DSM patches. Except for median fusion, pixelwise error maps
are required by weighted averaging and sparse representations.
A comparison between weighted averaging and sparse represen-
tations (Schindler et al., 2011) found that the quality of the fused
DSMs is mostly determined by the quality of these pixel based
error maps.

Figure 1: Fusion of multiple DSMs covering the same area

Another direction of work (Pock et al., 2011) aims to formulate
a global energy function, minimizing the distance of the fused
result to all input DSMs simultaneously and additionally incor-
porates the assumption of the world being locally planar. Due to
its simple structure and theoretically well founded minimization
procedure, we build upon this work and extend it to a weighted,
multi-resolution, fusion framework.
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2 METHOD

As most computer vision problems are generally ill-posed (e.g.
image segmentation, stereo reconstruction, image fusion), addi-
tional regularizers (constraints) are needed for physical meaning-
ful solutions. In our case of 2.5D image fusion, these regularizers
are the assumption of the world being locally planar, meaning
that height value of each pixel of the DSM depends on its local
context and e.g. is highly unlikely to have a signifanctly differ-
ent height value than its surrounding pixels. This smoothness
constraint typically is implemented by minimizing the gradient
of the resulting DSM. Together with the data term this results
in large systems of partial differential equations (pde) which are
time-consuming to solve and special care has to be taken to still
allow for strong discontinuities along building edges and to not
smooth them over. The design of the energy functional has to be
chosen such that it is convex in the variable to solve for. Other-
wise it would be very hard for non-linear minimization method
to not getting stuck in local minima.
In recent years, Total Variation based methods (TV) for minimiz-
ing energy functionals have seen a lot of attention in the research
community. One reason is that these algorithms are very well-
suited for parallelization and, together with the recent advances
of GPU-based computational power, lead to efficient algorithms,
solving these optimization problems efficiently. And as the en-
ergy functional of our image fusion problem can be written in a
convex formulation, the solution is globally optimal.

2.1 TV-L1 Fusion

Based upon the ROF-model for image denoising (Rudin et al.,
1992), the extension for multiple image fusion, together with re-
placing the quadratic data term by the more robust L1 norm as in
(Pock et al., 2011) is written by

min
u

{
‖∇u‖1 + λd

K∑
k=1

‖u− gk‖1

}
(1)

where u ∈ RM·N is our fused DSM to solve, the K input DSMs
are given as gk and the scalar factor λd balances the impact of
the smoothness term and the data term. While this model al-
ready provides good results by smoothing flat areas and preserv-
ing sharp discontinuities, it suffers from the so-called staircasing
effect. This effect is a direct result of the regularizer, whose as-
sumption is a locally planar world - where planar unfortunately
refers to locally fronto-parallel. This staircasing effect of the TV-
L1 algorithm is visible in Figure 2.

2.2 TGV-L1 Fusion

To overcome the fronto-parallel assumption of TV-L1 minimiza-
tion, (Bredies et al., 2010) introduced the mathematical model of
Total Generalized Variation (TGV) as a higher-order extension of
Total Variation which favors the solution to consist of piecewise
polynomial functions (e.g. fronto-parallel, affine, quadratic). Es-
pecially the 2nd order is of high interest, as it forces the solution
to consist of piecewise planar functions. In contrast to the TV-
L1 model, now also including slanted planes. (Pock et al., 2011)
applied this model to DSM fusion, resulting in the following op-
timization problem

min
u,v

{
λs‖∇u− v‖1 + λa‖∇v‖1 + λd

K∑
k=1

‖u− gk‖1

}
(2)

Now, before the variation of the image u is measured, a 2D vector
field v is subtracted from the gradient of u. An affine surface in
the image u has a constant gradient∇u, so by coupling and min-
imizing |∇u−v|, the vector field v will also be constant and it’s
gradient ∇v therefore zero. Regarding our overall optimization
problem, this means that the energy term will be lower, if affine
functions can be found in the image, whereas non-affine function
get additional penalties by |∇v|. The values λs, λa, λd are scalar
weights and balance the impact of the smoothness term, the affine
term and the data term.

2.3 Weighted TGV-L1 Fusion

When fusing DSMs it is desirable to weight the input DSMs on
a per pixel base, to be able to incorporate additional prior knowl-
edge into the fusion process. This prior knowledge for example
can be based on the different sensor characteristics used to gener-
ate the DSM, confidence measures during the 3D reconstruction
process itself, information about occluded and therefore unknown
areas in each DSM, etc. We therefore extend Equation 2 with a
weighting matrix Wk for each input DSM

min
u,v

{
λs‖∇u− v‖1 + λa‖∇v‖1 + λd

K∑
k=1

Wk‖u− gk‖1

}
(3)

This optimization problem (and the ones in Equation 1 and 2) is
very parameter dependent, as we need to adapt the influence of
the data term λd manually for datasets with different ranges of
g
(i,j)
k ∈ gk as well as for a different number K of input images.

To achieve independence of the data range of the input DSMs, we
scale all input data to the interval [0..1]

g
(i,j)
k =

g
(i,j)
k − gmin

gmax − gmin
(4)

with gmin = mini,j,k g
(i,j)
k and gmax = maxi,j,k g

(i,j)
k . The

independence from K is achieved by normalizing the influence
of the data term w.r.t. the two-image case and using the adaptive

λK
d =

2

K
λd (5)

Note that all these extensions and modifications apply to the TV-
L1 method similarly. In the next section we will go into detail
about how to solve these optimization problems numerically.

3 ALGORITHM

To solve for the fused DSM u ∈ RM×N (in the following written
as stacked vector RMN×1) in Equation 3, we need to overcome
the non-differentiable L1-norm, which complicates any gradi-
ent descent based minimization scheme. An efficient algorithm
which elegantly circumvents the differentiability problem of the
gradient operator is the primal-dual algorithm of (Chambolle and
Pock, 2011).
By applying the Legendre-Fenchel transform we obtain the dual
formulation / conjugate of the separate terms as

λs‖∇u− v‖1 = max
p∈P
{〈∇u− v,p〉} (6)

λa‖∇v‖1 = max
q∈Q
{〈∇v,q〉}

λd

K∑
k=1

Wk‖u− gk‖1 = max
rk∈R

{
K∑

k=1

〈u− gk,Wkrk〉

}
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such that the saddle-point problem in the primal variables u,v
and the dual variables p,q, rk with constraints

P = {p ∈ R2MN : ‖p‖∞ ≤ λs} (7)

Q = {q ∈ R4MN : ‖q‖∞ ≤ λa}

R = {rk ∈ RMN : ‖rk‖∞ ≤ λd}

is

min
u,v

max
p,q,rk

{
〈∇u− v,p〉+ 〈∇v,q〉+

K∑
k=1

〈u− gk,Wkrk〉

}
(8)

Please note that due to the stacked vector notation, the input
weights are denoted as diagonal matricesWk and the correspond-
ing multiplication Wkrk is actually a pixelwise multiplication.
The saddle-point problem above can be solved by iteratively per-
forming gradient descents on the primal variables and gradient
ascents on the dual variables. Applying this primal-dual algo-
rithm leads to the following optimization scheme:

do

pn+1 = ΠP (pn + τp(∇un − vn)) (9)

qn+1 = ΠQ (qn + τq∇vn)

rk
n+1 = ΠR (rk

n + τr(un − gk))

un+1 = un + τudivpn+1 − τu
K∑

k=1

(Wkrk
n+1)

vn+1 = vn + τvp
n+1 + τvdivqn+1

un+1 = 2un+1 − un

vn+1 = 2vn+1 − vn

while (n < nIterations) || (∆Energy < ∆EnergyThres)

To ensure the constraints of Equation 7, the corresponding prox-
imal mappings above are given as

ΠP (p) =
p

max{1, ‖p‖/λs}
(10)

ΠQ(q) =
q

max{1, ‖q‖/λa}

ΠR(rk) =
rk

max{1, ‖rk‖/λd}

In the analytical derivation of the primal-dual scheme, we re-
quire the gradient and divergence operators to be negative adjoint,
such that 〈∇u,p〉 = −〈u,divp〉 and 〈∇v,q〉 = −〈v, divq〉.
Therefore we use finite forward differences with Neumann bound-
ary conditions for the gradient operators and for the divergence
operators finite backward difference with Dirichlet boundary con-
ditions. The step sizes of the gradient ascents/descents are bound
to the norm of the gradient/divergence operators, see (Chambolle
and Pock, 2011), and are set to τu = τp = τr = 1/

√
K1 and

τv = τq = 1/
√
K2, with K1 = 2(6 +K) and K2 = 2(4 +K).

The whole algorithm stops, if either the maximum number of
iterations has been reached (nIterations = 1000) or the en-
ergy change between successive iterations drops below a relative
threshold ∆EnergyThres = 0.1%.
Again, the algorithm for the TV-L1 fusion is derived similarly.

4 EVALUATION

4.1 Artificial Tests

The first evaluation is done on synthetic data. A given ground
truth DSM g is perturbed with noise to simulate different noisy
observations of the scene. Five of these noisy DSMs are then
given as input to the fusion algorithms and the accuracy of the
output DSM u is measured by the logarithmic signal-to-noise ra-
tio:

SNR = 10 log10

(
I2signal

I2noise

)
= 10 log10

(
||g||2

||u− g||2

)
(11)

In Figure 2, visual and numerical results are given, showing a sig-
nificantly higher accuracy of the global optimization methods for
DSM fusion over simple mean and median based fusion. Please
note that we applied mean and median filtering for all height val-
ues of a single pixel as well as its neighboring pixels to also in-
clude some spatial regularization.

4.2 Unimodal DSM fusion

In our second evaluation, we created 10 different DSMs of the
same 1km × 1km area of the inner city of London using a stereo
reconstruction framework as proposed in (Kuschk, 2013). For
this we have a collection of 25 WorldView-2 images, taken from
different positions during one pass of the satellite. The ground
sampling distance (GSD) of these images are 0.5m and for eval-
uation purposes, we obtained a LiDAR measurement of the same
area by aerial laser scanning, unfortunately only having a GSD
of 1.0m. Two of the satellite images together with the computed
heightmaps are shown in Figure 3. The 10 selected heightmaps
are projected in the same orthogonal UTM coordinate system and
the resulting DSMs are again fed into the different fusion algo-
rithms. Figure 4 shows the result of median based fusion ver-
sus TGV-L1 fusion, again with a lower noise ratio visible for
the TGV-L1 algorithm. The accuracy of the fused DSMs w.r.t.
to the LiDAR ground truth is given in Table in the common er-
ror metrics Mean Absolute Error (MAE), Root Mean Square Er-
ror (RMSE), Normalized Median Absolute Deviation (NMAD).
Here the improvements are hardly detectable at all, with all algo-
rithms exhibiting similar numerical results. As of yet we do not
have further explanation for these results, but strongly suspect
the coarse resolution / GSD of our ground truth data mentioned
above (in average we only have 1 LiDAR point covering the area
of 4 DSM pixels).

MAE [m] RMSE [m] NMAD [m]
median 1.74 3.89 1.62
TV-L1 1.75 3.65 1.55
TGV-L1 1.69 3.64 1.51

Table 1: London dataset: Accuracy of the fused DSM w.r.t.
ground truth obtained by aerial laserscanning (LiDAR)

4.3 Multimodal DSM fusion

Our third evaluation is investigating the results of fusing DSMs
derived from different sensors and different spatial resolutions.
The test data is taken from the ISPRS benchmark (Reinartz et
al., 2010) and consists of 3 different scenes (hilly forest = La
Mola, mountains = Vacarisses, city = Terassa) near Barcelona,
Spain. For each scene, we compute a DSM from the two given
CartoSat-1 images (GSD=2.5m) and a DSM from the two given
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(a) Groundtruth data (b) 1 of 5 noisy input images (c) Fusion using pixel based plus spatial mean
filtering, SNR = 22.76

(d) Fusion using pixel based plus spatial median
filtering, SNR = 32.61

(e) TV-L1 fusion, SNR = 39.60 (f) TGV-L1 fusion, SNR = 40.32

Figure 2: Comparison of local fusion method versus global optimization methods. Both numerical results and visual appearance show
the benefit of the latter ones.

(a) Input image A (b) Heightmap of image A

(c) Input image B (d) Heightmap of image B

Figure 3: London dataset: 2 out of 10 input images and their
corresponding heightmaps

WorldView-2 images (GSD=0.5m). Fusion of the different reso-
lution DSMs is done by projecting the DSMs into the same co-
ordinate frame and setting the weights wk for the invalid pixels
of the coarser resolution to zero. As reference we have LiDAR
data with a GSD of about 1.0m. The numerical results of local
median fusion and global TV-L1 and TGV-L1 fusion are given
in Table 2, indicating an improvement of both local and global
fusion algorithms over the coarse CartoSat-1 DSM, but only the
global fusion algorithm improves the result of the high resolution
WorldView-2 DSM.

(a) Result of median fusion

(b) Result of TGV fusion

Figure 4: London dataset: Fusion results
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(a) WorldView-2, La Mola (b) WorldView-2, Terassa (c) WorldView-2, Vacarisses

Figure 5: ISPRS dataset: Exemplary WorldView-2 images of the three sub datasets

Algorithm La Mola Terassa Vacarisses
MAE[m] RMSE[m] NMAD[m] MAE[m] RMSE[m] NMAD[m] MAE[m] RMSE[m] NMAD[m]

CartoSat-1 4.82 12.77 2.18 2.80 5.90 1.81 3.76 8.80 2.11
WV-2 4.43 8.31 4.00 2.31 3.66 2.06 3.05 5.00 3.07

median 4.51 10.45 3.03 2.44 4.71 1.79 3.07 6.17 2.49
TGV-L1 4.31 8.11 3.89 2.27 3.61 2.00 2.99 4.89 3.00

Table 2: Results of local median fusion and global TGV-L1 fusion for heterogenous sensor data (CartoSat-1 and WorldView-2 satellite
images). The first two rows show the accuracy of the unfused DSM of each satellite separately, whereas the two bottom rows show the
fusion results of the two DSMs per scene.

5 CONCLUSION

In this paper we proposed global optimization algorithms for fus-
ing multi-resolution DSM obtained by heterogenous sensors. These
global optimization algorithms are based on adaptively
weighted TV-L1 and TGV-L1 optimization problems, allowing
for a context-aware fusion of multiple DSMs. In three different
evaluations, both synthetic and real world data sets, a significant
improvement of the accuracy was shown with respect to mean
and median based filtering methods.
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