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ABSTRACT: 

 

In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been 

increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The 

interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise 

affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to 

perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out 

eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is 

fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual 

smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution 

with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of 

pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-

noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of 

features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full 

polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with 

well-known despeckling methods.  
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1. INTRODUCTION 

Polarimetric analysis enhances the discrimination capability of 

SAR sensors and this makes the PolSAR data very useful for 

various land use applications. However, polarimetric SAR data 

suffer from some limitations related to unavoidable presence of 

speckle noise caused by coherent interface of waves reflected 

from many elementary scatterers (J.-S. Lee 1981). The presence 

of speckle in PolSAR data complicates the image processing 

and interpretation and also reduces the accuracy of image 

segmentation and classification. Consequently, reduction of 

such noises is a principal step in preprocessing procedure and 

should be realized before other analysis applied to data. Speckle 

degrades radiometric resolution of SAR images (Espinoza 

Molina, Gleich, and Datcu 2012) and understanding PolSAR 

speckle statistics can be beneficial for different applications 

such as change detection (Moser and Serpico 2006), ice 

monitoring (Dierking and Busche 2006), and land cover 

classification (Tison et al. 2004). 

Various techniques are presented in literature for speckle 

reduction. These techniques include the very simple idea of 

moving average and multi-look processing to more 

sophisticated statistical modelling (J. S. Lee and Pottier 2009). 

Generally, speckle reduction methods are divided into 

parametric and nonparametric approaches. Nonparametric 

methods are used according to local statistics of the image while 

parametric methods use a proper statistical model for data and 

estimate its parameters using either pixel-wise or contextual 

analysis (Tello Alonso et al. 2011).  

Markov Random Field (MRF) has proven to be a powerful 

parametric model for drawing out eliciting contextual 

information from remote sensing imagery (Moser and Serpico 

2006). One of the most important benefits of MRF method is its 

extraordinary ability to model the spatial correlation between 

neighbouring pixels. MRF models have been used in different 

kinds of image analysis applications such as image 

segmentation, texture extraction, image denoising and data 

fusion (Li 2009). The potential of MRF models to retrieve 

spatial contextual information makes it desired to reduce the 

speckle noise of the PolSAR data. This research presents a 

novel approach for speckle reduction of PolSAR images by 

combining advanced statistical modeling and spatial context 

within an MRF framework. MRF models have been used in 

different image analysis problems such as segmentation (Deng 

and Clausi 2004) and classification (Tison et al. 2004). 

In this paper, a combination of pixel-wise and contextual 

analysis is introduced for the representation of restored PolSAR 

data. First a probability density function (PDF) which is fitted 

well with the used data based on goodness-of-fit test, is 

obtained for pixel-wise analysis. Then the contextual smoothing 

is achieved with MRF model. A new idea which is proposed for 

speckle reduction of SAR data based upon weighted summation 

of these two sections (i.e. pixel-wise and contextual analysis). 

The weights are determined according to the spatial correlation 

between pixels over pre-defined neighbourhood system. For 

each window, if the correlation between the central pixel and 

neighbouring pixels is high, more weight is assigned to pixel-
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wise part and vice versa. Therefore, we can optimize the role of 

contextual smoothing in the speckle reduction by giving 

appropriate weight to it. Our proposed methodology is applied 

to full polarimetric L medium resolution ALOS data from 

Tehran, Iran and also to high resolution L-band PolSAR data 

over the Oberpfaffenhofen test-site in Germany. These images 

cover both urban and non-urban areas. The results of this 

adaptive speckle reduction method are compared to other well-

known de-speckling methods. The efficiency of the approach 

has evaluated by quantitative metrics (i.e. Signal to noise ratio, 

Equivalent number of look and Root mean square error). 

Section 2 of this paper describes the methodology and 

introduces our proposed filtering technique. In the next section 

experimental results presented and discussion and conclusion 

offered in continuation.  

 

2. METHODOLOGY 

The main purpose of despeckling is the estimation of the noise-

free image from the observed image. The noise-free image is 

achieved in this study by performing of both pixel-wise and 

contextual analysis simultaneously but their effective 

combination remains a major challenge. Figure 1 illustrates the 

detailed flowchart of methodology we used for this challenging 

combination.  

 

 
Figure 1. Flowchart of proposed approach. 

 

We base our theory upon the doubly stochastic product model 

(Espinoza Molina, Gleich, and Datcu 2012), which decompose 

single look complex (SLC) value as: 
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Where the strictly positive scalar random variable τ models 

texture, and represents the backscatter variability due to 

heterogeneity of the radar cross section (Oliver and Quegan 

2004). The second component, the speckle noise term ω, 

follows complex Gaussian distribution. With a logarithm 

transformation, the multiplicative nature of the above equation 

gets additive as follows: 
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We will use the homogeneous Gauss-MRF to model the spatial 

correlation between pixels for both texture and speckle 

components. 

 

 

 

)(ˆ)(ˆˆ

)(ˆ)(ˆˆ

21

21

contextuaYpixelwiseYY

contextulXpixelwiseXX



    (3) 

 

 

Therefore, we can separate pixel-wise and contextual parts as: 
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and their weighted summation is written as equation (5). 
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2.1 Pixel-wise statistical analysis 

The texture term of the product model is given by the gamma 

distribution with PDF given by: 
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With shape parameter α > 0 and unit mean value E{τ}=1.  

The flexibility of the gamma distribution by different shape 

parameters is shown in Figure 2. The resulting distribution of 

the product model follows K-distribution.  

 

 
Figure 2. Flexibility of gamma distribution with different values 

of shape parameter.  

 

 

2.2 Contextual analysis by MRF 

For extraction of contextual information and its integration with 

pixel-wise term for improving of speckle reduction, we adopt an 

MRF model which generally presents spatial correlation 

between neighbouring pixels. As a consequence, an MRF can 

be applied for contextual term and gamma distribution while 

Gaussian model are used for pixel-wise term for the SAR image 

statistics. 
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2.2.1 Markov random field  

 

MRF theory enables the modeling of contextual dependencies 

between a set of sites S which are given by: 

 

  NjMijisS  1,1);,(    (7) 

 

These sites might be pixels in an image or individuals in a 

social network. Also a value random field defined in the S as 

follows:  
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Where B denotes the pixel lattice and set of all possible values 

in the image. The values for a set of sites S will be denoted by: 
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We introduce first and second-order neighbourhood  systems as 

illustrated graphically in Figs. 3 - 4(Levada, Mascarenhas, and 

Tannús 2008). 

 

 
Figure 3. First-order neighbourhood  system and its division 

into cliques. The black squares represent the site of interest and 

the white squares represent the neighbouring sites.  

 

 

 
Figure 4. Second-order neighbourhood system. 

 

In this research Gauss-MRF will be presented that is more 

suitable for modeling images with a large number of intensity 

levels. This model is defined by the choice of continuous 

potential functions. Pairwise cliques, having two sites, are the 

smallest cliques to convey contextual information. Models with 

higher order cliques can potentially model more complex 

interactions between values than models using only pairwise 

cliques. The models discussed in this paper use only single and 

pairwise cliques. The Gaussian model is defined for continuous 

values by its mean and covariance terms. The conditional 

probability density function (pdf) for the label at a site given the 

labels of the neighbouring sites is given by: 
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Also we can estimate this pdf with help of energy function 

which is as follows: 
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The single site and pairwise clique potential functions for the 

Gaussian model are: 
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2.2.2 Energy function for Gauss-MRF model 

 

Assuming second-order neighbourhood system, the energy 

function of the Gauss-MRF is given by: 
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That ix  is central pixel and jx  is neighbouring pixel in each 

clique. For the simplicity of computations, the current study 

confines an isotropic second-order isotropic neighbourhood  

system and the related set of pairwise cliques (Levada, 

Mascarenhas, and Tannús 2008), as depicted in Figure 4. 

 

 

2.3 Weight determination 

In the previous section, we discussed about how to determine 

pixel-wise and contextual terms separately. Now we modulate 

these parts by giving appropriate weights to each of them. A 

novel idea is proposed here for modulating these parts based 

upon weighted summation of these two sections (i.e.,pixel-wise 

and contextual analysis). The weights are determined based on 

the spatial correlation between pixels over a given 

neighbourhood system. For each window, if the correlation 

between the central pixel with neighbouring pixels is high, more 

weight is assigned to pixel-wise part and vice versa. Therefore, 

we can optimize the role of contextual smoothing in the speckle 

reduction by giving the appropriate weight to it. This approach 

maintains the mean value of the original signal in the 

homogenous areas and preserves the edges of features in the 

heterogeneous regions.  

Therefore, weight parameter in Equation (14) (R parameter) can 

be estimated as follows: 
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Normalized weighting coefficient is given by:  
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3. QUANTITATIVE EVALUATION METRICS 

The performance of the proposed algorithm for speckle 

reduction is evaluated in term of quantitative metrics such as 

signal to noise ratio (SNR), equivalent number of look (ENL), 

root mean square error (RMSE). Also the results are compared 

with other well-known speckle reduction methods. Larger SNR 

values correspond to qualitative image. SNR can be calculated 

from equation (16):  
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In this equation A, B are de-noised and original images 

respectively and M×N is the size of image. The values of SNR 

indicate the quality of image reconstruction. 

Equivalent Number of Looks (ENL) is another metrics which 

show the ability of speckle reduction and performance of 

smoothing procedure. This quantitative index calculated using 

the following equation:  

 

2)(



ENL                      (17) 

 

μ and σ are the mean and standard deviation of the images. The 

higher values of ENL show the higher efficiency in smoothing 

speckle on homogeneous areas. 

Root Mean Square Error (RMSE) is other metrics which is root 

of the square error averaged over m×n window. This parameter 

is calculated as in (18) and lower values of that show higher 

quality of de-speckled image.   
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4. IMPLEMENTATION ON REAL POLSAR DATA 

In this section we present restoration results applied to real 

PolSAR data. The results of the proposed methodology are 

shown using medium-resolution L-band ALOS data (image has 

size 512 x 512) from the Tehran area in Iran (Fig. 5(a)) and a 

sample data set of ESAR PolSAR data, from Oberpfaffenhofen 

test site (Fig. 5(c)). Figures 5(b) and 5(d) show two filtered 

images with the proposed method in this research. As seen in 

Figures 5(b,d), preserving and sharpening of linear structures 

such as roads and coastal line is visually evident.  
 

  
(a) Original image (Tehran) 

 

(b) Despeckled image 

(Tehran)  

  
(c) Original image 

(Oberpfaffenhofen)  

 

(d) Despeckled image 

(Oberpfaffenhofen)  

Figure 5. Despeckling Results of Amplitude Image.  

 

 

Tables 1 and 2 list the comparison between quantitative indices 

of some de-noising methods for our case study. Improvement in 

the signal to noise ratio and amount of the RMSEs is also 

evident in terms of these metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Quantitative Comparison for Despeckeling of ALOS 

Image  

 

 

 

 

 

 

 

 

 

 

 

Table 2. Quantitative Comparison for Despeckeling of ESAR 

Image  

 

 

Figures 6 and 7 present a visual comparison of proposed 

method with other well-known methods.  

 
Figure 6. Visual comparison for Despeckeling of ALOS Image. 

Parameters 
SNR ENL RSME 

Methods 

Lee 17.69 6.32 0.087 

Kuan 17.41 6.49 0.086 

Frost 19.89 5.97 0.079 

Gauss 

MRF 
25.66 4.95 0.023 

Parameters 
SNR ENL RSME 

Methods 

Lee 16.11 6.05 0.072 

Kuan 17.04 5.93 0.069 

Frost 20.38 5.19 0.058 

Gauss 

MRF 
27.41 4.08 0.019 
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Figure 7. Visual comparison for Despeckeling of ESAR Image. 

 

 

5. CONCLUSION 

In this paper a novel despeckling algorithm has been developed 

for PolSAR imagery. This method works by integration of 

advanced statistical analysis with spatial contextual information 

with the help of Markov random field. We tested the proposed 

algorithm for a real medium-resolution L-band ALOS PolSAR 

data (image has size 512 x 512) from Tehran area in Iran and a 

sample data set of ESAR PolSAR data, from Oberpfaffenhofen 

test site. The obtained results confirm the effectiveness of 

proposed algorithm by both visual inspection and quantitative 

comparison. In particular, the proposed method has a good 

performance in preserving edges of features and improving 

signal to noise ratio in the final despeckled images. 
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