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ABSTRACT: 

 

 

The main objective of this research is to find the extent to which the minimal variability Ordered Weighted Averaging (OWA) model 

of seismic vulnerability assessment is sensitive to variation of optimism degree. There are a variety of models proposed for seismic 

vulnerability assessment. In order to examine the efficiency of seismic vulnerability assessment models, the stability of results could 

be analysed. Seismic vulnerability assessment is done to estimate the probable losses in the future earthquake. Multi-Criteria 

Decision Making (MCDM) methods have been applied by a number of researchers to estimate the human, physical and financial 

losses in urban areas. The study area of this research is Tehran Metropolitan Area (TMA) which has more than eight million 

inhabitants. In addition, this paper assumes that North Tehran Fault (NTF) is activated and caused an earthquake in TMA. 1996 

census data is used to extract the attribute values for six effective criteria in seismic vulnerability assessment. The results 

demonstrate that minimal variability OWA model of Seismic Loss Estimation (SLE) is more stable where the aggregated seismic 

vulnerability degree has a lower value. Moreover, minimal variability OWA is very sensitive to optimism degree in northern areas of 

Tehran. A number of statistical units in southern areas of the city also indicate considerable sensitivity to optimism degree due to 

numerous non-standard buildings. In addition, the change of seismic vulnerability degree caused by variation of optimism degree 

does not exceed 25% of the original value which means that the overall accuracy of the model is acceptable.  

 

 

1. INTRODUCTION 

Natural disasters have long been one of the main sources of 

damage to human societies (Crowley and Bommer, 2006). 

Earthquakes are known as one of the most destructive disasters 

which can cause a huge damage in very few seconds. Tehran, 

capital of Iran, is threatened with a number of known and 

unknown faults surrounding the city (Alinia and Delavar, 2011). 

In addition, high population, rapid expansion and non-standard 

constructions are turning Tehran into an extremely vulnerable 

city to earthquake ( Samadi Alinia and Delavar, 2011; Hashemi 

and Alesheikh, 2012; Khamespanah et al., 2013). Extensive 

researches has been undertaken to estimate the loss of property 

and human life in the future earthquake of Tehran . A number of 

researches proposed seismic loss estimation models based on 

multi-criteria decision making algorithms (Kolat et al., 2006; 

Mohan et al., 2007; Rashed and Weeks, 2003). The main 

framework of these models include: (1) determining the 

contributing criteria that affect the seismic vulnerability of an 

urban area (2) extracting and normalizing the attribute values 

(3) specifying the experts’ opinion (4) aggregating the attribute 

values using MCDM algorithms and calculating the 

vulnerability degrees. Therefore, seismic vulnerability models 

do not have the same results necessarily. On the other hand, 

Tehran has not experienced any earthquake since 1830 

(Hashemi and Alesheikh, 2012). Consequently, independent 

validation of Tehran’s seismic loss estimation models is 

impossible due to lack of real data. However, sensitivity 

analysis is a powerful tool that facilitates experts to study the 

stability of seismic vulnerability models. In other words, the 

main objective of analysing the sensitivity of the seismic 

vulnerability models is to find the extent to which the 

vulnerability degrees obtained are sensitive to the variation of 

input attribute values and model parameters. 

This paper examines the validation of Tehran’s seismic 

vulnerability model based on OWA operator through analysing 

the sensitivity of results to model parameters. OWA is a 

MCDM method that enables the inclusion of the optimism 

degree into the model. Applying the OWA operator, a spectrum 

of seismic vulnerability degrees are obtained regarding the 

decision strategy selected by experts. The main objective of this 

research is to examine the influence of variation of the optimism 

degree in the final vulnerability degrees. Minimal variability is 

one of the most powerful methods for deriving the order 

weights (Yager, 1988). The sensitivity of minimal variability 

OWA model of seismic vulnerability to optimism degree is 

analysed in this research. This analysis indicates the stability 

and robustness of the model. The basic contribution of this 

research is to propose a novel model of validating the seismic 

vulnerability model based on sensitivity analysis of the results. 

This model assumes that the North Tehran Fault is activated. 

Tehran’s 1996 census data is used to extract the contributing 

attribute values. 
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While it is impossible to compare the results of SLE models 

with the damage caused by a real earthquake, the sensitivity 

analysis is one of the most significant tools of validating the 

model. The precision of SLE models substantially depends on 

the uncertainty involved in the input attribute values and model 

parameters. Baker and Cornell (2008) examined the propagation 

of uncertainty in SLE models. Moreover, they proposed a model 

for assessing the efficiency of results provided by SLE models. 

In MCDM the impact of uncertainty involved in input attribute 

values could be analysed using Monte Carlo method (Bullard 

and Sebald, 1988). Emmi and Horton (1995) proposed a GIS-

based model applying Monte Carlo simulation for estimating 

the seismic loss with uncertain attribute values. Jahanpeyma et 

al. (2007)  simulated spatial error propagation in SLE models 

using Monte Carlo method. They realized that there is an 

inverse relationship between the number of iterations required 

to enhance the precision of SLE model and the square root of 

precision (Jahanpeyma et al., 2011).  

In addition to uncertain input attribute values, uncertain model 

parameters could also reduce the robustness of output 

vulnerability degrees obtained using a MCDM method 

(Borenstein, 1998). 

Samadi Alinia and Delavar (2011) proposed an accuracy 

measure for Tehran’s seismic vulnerability model based on 

granular computing which shows the average proportion of 

granules (urban statistical units) correctly classified based on 

the association rules. Khamespanah et al. (2013) improved the 

granular computing model of SLE by considering the exception 

rules as well as association rules.  

A number of MCDM methods including OWA operator take the 

optimism degree into account. Therefore, any uncertainty in 

optimism degree (as a widely effective model parameter) could 

cause an uncertain vulnerability degree Zarghaami et al. (2007). 

Sensitivity analysis enables experts to find out how sensitive are 

the result to the optimism degree. In other words, the sensitivity 

analysis of OWA-based model of SLE distinguishes how much 

the obtained vulnerability degrees change by any variation in 

optimism degree (Ben-Arieh, 2005; Torra, 2001; Zarghami and 

Szidarovszky, 2008; Zarghami et al., 2008). Ben-Arieh (2005) 

proposed a method for measuring the sensitivity of the 

quantifier-guided OWA-based models. Zarghami et al. (2008) 

improved this method by developing it for minimal variability 

OWA operators. In the current research minimal variability 

OWA is implemented in order to analyse the sensitivity of 

OWA-based models of Tehran’s seismic vulnerability 

assessment. 

 

 

2. METHODS AND MATERIALS 

 

2.1 OWA Operator 

(Yager, 1988) introduced an umbrella group of operators that 

not only is able to satisfy all (And operator) and at least one (Or 

operator) of criteria but also it could satisfy a favourable 

proportion of criteria. The new aggregation operator is named 

ordered weighted averaging operator. OWA aggregation 

function is defined by Equation (1) (Yager, 1988): 

 

 

 (          )  ∑           
 
                (1) 

 

 

where  ai = the attribute value associated with ith criteria 

 bj = jth largest value in input values 

 F = aggregated goodness measure for an alternative 

 

 

2.2 OWA Weights 

The only parameter defining the properties of OWA operator is 

W (the weight vector). Different weight vectors lead to different 

aggregation functions (Filev and Yager, 1998). The weight 

vector also specifies the optimism degree, which is closely 

related to decision strategy used by experts. Therefore, OWA 

operator can cover a wide range of operators from Min (low 

risk) to Max (high risk) operator (Filev and Yager, 1998). W = 

[1, 0, 0, …, 0] simulates Max operator, while W = [0, 0, …, 0, 

1] changes the OWA into Min operator. A Weighted Linear 

Combination (WLC) operator is built using W = [1/n, 1/n, …, 

1/n] as the weight vector (Drobne and Lisec, 2009). However, 

for all non-equal order weights OWA turns into a non-linear 

aggregation operator. A number of methods have been 

developed to derive order weights. Some of them are based on 

using natural language expressions known as linguistic 

quantifiers(Yager, 1996). These methods tend to specify the 

proportion of criteria that are going to be satisfied by linking a 

linguistic quantifier to OWA operator. A number of methods are 

based on minimum variance of order weights (Fullér and 

Majlender, 2003). Minimizing the variance of order weights 

enables experts to make a decision based on all information 

content of attribute values.Min et al. (2007) indicated that 

normal distribution can be used in order to obtain OWA 

weights, when the input attributes are random variables. Table 1 

indicates the main methods proposed to derive order weights. 

 

Method to derive order weights Reference 

Maximizing the entropy of weight 

vector 

(Fullér and Majlender, 

2001) 

Learning OWA weights from 

observations 

(Filev and Yager, 1994) 

Using exponential function (Xu, 2005) 

Minimizing the variance of weight 

vector 

(Fullér and Majlender, 

2003) 

Probabilistic OWA (Merigó, 2009) 

Pairwise comparison between 

criteria 

(Boroushaki and 

Malczewski, 2008; 

Yager and Kelman, 

1999) 

Using linguistic quantifiers (Malczewski, 2006; 

Yager, 1996) 

Table 1. Fundamental methods of deriving OWA weights 

 

2.3 Minimal Variability OWA 

Minimal variability is one of the models proposed to derive 

OWA order weights (Fullér and Majlender, 2003). The main 

objective of minimal variability is to necessitate the OWA 

operator to use all information content provided by attribute 

values (Filev and Yager, 1998). (Yager, 1988) proposed two 

fundamental measures on OWA weight vector including: 

optimism degree and dispersion. Optimism degree is calculated 

using Equation (2)(Yager, 1988): 

 

 

 ( )  
 

   
∑ (    
   )                                                     (2) 

 

 

where  O (W) = calculated optimism degree of weight vector 

 wi = weight associated to ith largest attribute value 

 n = the number of criteria 
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This measure indicates the level of optimism in a decision 

making process. An optimistic decision maker select the 

alternative which has the maximum similarity to the favourable 

solution, while a pessimistic decision maker tends to select the 

alternative with minimum similarity to the unfavourable 

solution (Chen, 2011). The optimism degree ranges from 0 to 1. 

For a pessimistic OWA operator O (W) =0, while O (W) =1 

indicates an optimistic OWA operator. (Yager, 1988) proved 

that optimism degree is not enough to describe the behavior of 

OWA operator. He introduced measure of dispersion presented 

by Equation (3) (Yager, 1988): 

 

 

 ( )  ∑      (  )
 
                                                               (3) 

 

 

where     D(W) = dispersion of the weight vector 

 

Larger values of dispersion ensure that different criteria have 

approximately the same effect on the vulnerability assessment 

problem. However, order weights are not equal. Therefore, the 

weight vector associated to an OWA operator with a predefined 

optimism degree is derived by solving a constraint optimization 

problem(Yager, 1988). Fullér and Majlender (2003) indicates 

that using the minimal variability constraint leads to more 

efficient results. In order to obtain the weight vector, they 

proposed the following optimization problem: 
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where     D = standard deviation of weights 

             W = weight vector 

             wi = the weight associated to the ith largest attribute 

value 

             n = the number of criteria 

 

 

 

3. CASE STUDY 

3.1 Study Area 

The study area of this research is Tehran Metropolitan Area. 

Having more than eight million inhabitants, TMA is the most 

crowded city of Iran (Hashemi and Alesheikh, 2012). 

Seismologists argue that existence of four great faults (including 

North Tehran Fault, North and South Rey Faults and Mosha 

Fault) inside and around the city makes it extremely vulnerable 

in future earthquake Samadi Alinia and Delavar (2011). 

 

3.2 Data 

Although censuses were taken in 2006 and 2010, 1996 census 

data is used in this paper due to availability of 1996 data. Six 

contributing criteria are introduced by experts (see Table 2). 

Based on Iranian Civil Society (ICS) buildings built before 

1966 are considered as non-standard buildings. Moreover, the 

percentage of weak buildings built between 1966 and 1988 is 

considered as another affective criterion. Height of buildings are 

included into the model using two categories including 

percentage of buildings having less than four floors and 

percentage of buildings having 4 floors and more. The distance 

of each statistical unit and their average slope are determined as 

important factors by experts. 

 

Layer Definition 

Slp Average slope of each statistical unit 

Ls_4 Percentage of buildings having less than 4 floors 

in each statistical unit 

Mr_4 Percentage of buildings having 4 floors and more 

in each statistical unit 

Bf_66 Percentage of buildings built before 1966  in 

each statistical unit 

Bt66-88 Percentage of weak buildings built between 

1966-1988 in each statistical unit 

Dst_F The geometric distance of statistical units to 

NTF (in km) 

Table 2. Contributing criteria and their definitions 

 

3.3 Data Preparation 

The attribute values of five randomly selected statistical units 

are illustrated in Table 3. 

 

id Slp  Ls_4 Mr_4 Bf_66  Bt66-88  Dst_F(km)  

1 14 17 8 52 13 6.751 

2 1 4 0 84 6 3.890 

3 26 2 0 91 19 1.435 

4 4 88 0 97 0 5.476 

5 6 9 1 63 5 2.054 

Table 3. Attribute values of five randomly selected statistical 

units 

Attribute values of different criteria are not in the same scale. 

Therefore, they cannot be aggregated directly. Attribute values 

are first normalized. (Malczewski, 2006) introduced a method to 

normalize attribute values. He classified all contributing criteria 

into two classes including cost and benefit criteria. Benefit 

criteria are a class of criteria that their larger values are 

favourable for the decision maker. However, lower values of 

cost criteria are desirable. Through the normalization process all 

attribute values are divided by their maximum value. Then, the 

attribute values of the cost criteria are subtracted bye one. In the 

seismic vulnerability assessment distance to the North Tehran 

Fault is specified as a cost criterion, while five other criteria are 

benefit criteria. Table 4 demonstrates the normalized attribute 

values of five selected statistical units. 

 

 

id Slp  Ls_4 Mr_4 Bf_66  Bt66-88  Dst_F(km) 

1 0.53 0.17 0.22 0.53 0.54 0.71 

2 0.03 0.04 0 0.86 0.25 0.84 

3 1 0.02 0 0.93 0.79 0.94 

4 0.15 0.91 0 1 0 0.77 

5 0.25 0.09 0.02 0.64 0.20 0.92 

Table 4. Normalized attribute values of five randomly selected 

statistical units 

  

3.4 Sensitivity Analysis for Minimal Variability OWA 

Figure 1 illustrates the steps undertaken in order to calculate the 

sensitivity of seismic vulnerability degree to optimism degree 

using the minimal variability model. First, the criteria that 

substantially affect the seismic vulnerability are detected. Then, 
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these criteria are categorized into two major types including 

benefit and cost. The attribute values then are normalized 

regarding the type of the criteria. Next, experts are asked to 

determine the decision strategy (optimism degree). Order 

weights are calculated using Equation (5). Then, the sensitivity 

of seismic vulnerability degree is obtained for each statistical 

unit applying Equation (6). Sensitivity degrees are classified 

into five classes and the result is illustrated using ArcGIS 

software. 

 

 
Figure 1. Steps to analyze the sensitivity of model 

 

 

The order weights in minimal variability OWA is derived using 

Equation (5)(Zarghami et al., 2008): 
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 (   )
  

   
 (   )(   )  (   )

 (   )
                                                          (5) 

   
   

   
   

   

   
      *      +  

 

 

where  O = optimism degree 

 n = the number of criteria 

 

In the proposed model of seismic vulnerability assessment there 

are six different criteria. Consequently, for each given optimism 

degree a set of six order weights is calculated which has the 

minimum variance among all possible weight vectors. Table 5 

demonstrates the order weights for five different optimism 

degrees, calculated using Equation (5). 

 

 

O(W) W1 Variance 

0 [0, 0.04, 0.09, 0.23, 0.38, 0.52] 0.04256 

0.25 [0, 0.05, 0.13, 0.2, 0.27, 0.34] 0.01691 

0.50 [0.16, 0.16, 0.16, 0.16, 0.16,  0.16] 0 

0.75 [0.34, 0.27, 0.2, 0.13, 0.05, 0] 0.01691 

1 [0.52, 0.38, 0.23, 0.09, 0.04, 0] 0.04256 

Table 5. Weight vector and variance for five different optimism 

degree 

 

Table 5 illustrates that lower optimism degrees (O (W) = 0) tend 

to generate larger weights at the end of weight vector, while in 

more optimistic decision strategies (O (W) = 1) larger weights 

are derived at the beginning of the weight vector. OWA 

operator sorts the attribute values in a descending order. 

Therefore, for O (W) = 0, the largest attribute value among six 

affecting criteria is multiplied by 0 and the lowest attribute 

value is multiplied by 0.52. In other words, based on minimal 

variability OWA model of seismic vulnerability in pessimistic 

decision strategies, the criteria that has the minimum attribute 

value extremely affect the final vulnerability and for larger 

values of optimism degree the criteria with maximum attribute 

value has a considerably high effect in aggregated seismic 

vulnerability degree. 

 

After deriving the weight vectors, the aggregated vulnerability 

degrees are calculated using Equation (1). Five distinct 

solutions are obtained by applying this model. In other words, 

for each statistical unit five different seismic vulnerability 

degrees are calculated. Higher optimism degree results in the 

higher aggregated seismic vulnerability degree. Aggregated 

vulnerability degrees for five selected statistical units are 

illustrated in Figure 2. 

 

 
Figure 2. Aggregated seismic vulnerability degree for five 

randomly selected statistical units 

 

It could be concluded from Figure 2 that optimism degree has a 

direct relationship with aggregated seismic vulnerability degree 

for O (W) = 1 the highest values are obtained, while O (W) = 0 

lead to approximately lowest value for all five statistical units. 

 

  

3.4.1 Measuring the Sensitivity of the Minimal 

Variability OWA Model: A wide range of seismic 

vulnerability degrees could be obtained using minimal 

variability OWA model. Sensitivity analysis of the model 

reveals that which one of these results is more robust and which 

one is more sensitive to optimism degree. Zarghami et al. 

(2008) calculated the sensitivity of aggregated value of minimal 

variability OWA using Equation (6):  

 

  
  

  
 

 

 (   )
∑ (      )  (         )
*
   

 
+

                 (6) 

 

 

where  S = sensitivity of aggregated value to optimism degree 

 bj = jth largest attribute value 

              n = the number of criteria 

 

This measure of sensitivity indicates the extent to which the 

aggregated value of each statistical unit changes by variation of 

decision strategy (optimism degree)(Zarghaami et al., 2007). In 

minimal variability OWA based model of seismic vulnerability 

assessment, the aggregated value denotes the vulnerability 

degree. Therefore, the sensitivity measure introduced in 

Equation (6) demonstrates the extent to which the vulnerability 

degree of a statistical unit is sensitive to the variation of 

optimism degree. The less sensitive the vulnerability degree of a 

Specifying the contributing criteria and 
Normalizing the Attribute values 

Determining the decision strategy 
(optimism degree) 

Calculating order weights using Equation 
(5). 

Applying Equation (1) to calculate the 
aggregated vulnerability degrees. 

Obtaining the sensitivity degree for each 
statistical unit using Equation (6). 
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statistical unit, the more robust the vulnerability degree is 

calculated under the uncertainty of optimism degree. Figure 3 

demonstrates aggregated seismic vulnerability degrees and their 

calculated sensitivity for the five selected statistical units. The 

results indicate that the sensitivity degree has a direct 

relationship with vulnerability degree. In other words, the 

vulnerability degree of vulnerable and very vulnerable statistical 

units is more sensitive to optimism degree in comparison to 

lower seismic vulnerable statistical units.  

  

 

 
Figure 3. Sensitivity and vulnerability measures for five 

randomly selected statistical units 

 

Figure 4 demonstrates the sensitivity degree for all statistical 

units in TMA. A number of statistical units in southern part of 

Tehran and most of the units in northern part of the city are very 

sensitive to optimism degree. It means that uncertainty involved 

in optimism degree results in high uncertainty in seismic 

vulnerability of these statistical units.  

 

 

 
Figure 4. Sensitivity measure for statistical units of Tehran 

Metropolitan Area 

 

A number of statistical units in northern part of Tehran are 

vulnerable and very vulnerable due to the very short distance to 

North Tehran Fault.  Non-standard construction causes a 

number of statistical units to be very vulnerable. Due to direct 

relationship between vulnerability degree and sensitivity of 

vulnerability degree, the statistical units which are vulnerable 

are very sensitive as well.  

 

 

4. DISCUSSION 

In ill-structured multi-criteria decision making problems such as 

seismic vulnerability assessment and loss estimation, in order to 

compare the efficiency of models, additional measures are 

required. One of the most significant measures that facilitate the 

comparison of different models is sensitivity measure. 

Calculating the sensitivity of vulnerability degrees of statistical 

units beside their vulnerability degrees enables experts to 

compare the stability and robustness of models. In minimal 

variability OWA model of seismic vulnerability assessment, the 

maximum of sensitivity measure is 0.27 which is 25% of its 

vulnerability degree. In other words, the variation of optimism 

degree will make a fluctuation between 0.9% and 25% in 

aggregated vulnerability degree. It means that the model 

considerably depend on optimism degree. However, in a 

number of safer areas, the model has an acceptable robust 

behaviour. In other words, in the minimal variability OWA, a 

more stable decision is made for the alternatives which have a 

lower aggregated value (safer statistical unit). As a conclusion, 

the minimal variability OWA model of seismic vulnerability 

assessment has a robust behaviour under uncertainty of 

optimism degree if the statistical units are not vulnerable or very 

vulnerable. 

 

 

5. CONCLUSION 

This paper proposed a model to analyse the sensitivity of 

seismic vulnerability degrees obtained by using minimal 

variability OWA operator. This additional measure facilitates 

seismic loss estimation under uncertainty. Sensitivity measure 

of seismic vulnerability model demonstrates which statistical 

unit have a more stable seismic vulnerability degree. The 

research indicates that sensitivity of seismic vulnerability 

degrees has a direct relationship with seismic vulnerability 

degrees. Consequently, the seismic vulnerability degree 

obtained from minimal variability OWA is more robust for safer 

statistical units, while for vulnerable and very vulnerable 

statistical units a higher level of uncertainty is involved in 

aggregated vulnerability degree. The results also demonstrate 

that the minimal variability OWA model for seismic 

vulnerability assessment have more precise values in central 

areas of TMA especially in areas that are not vulnerable to 

earthquake. However, the minimal variability OWA model is 

noticeably sensitive to optimism degree in northern areas and a 

number of southern parts which are more vulnerable to 

earthquake. Although this paper proposed a model to analyse 

the internal sensitivity of minimal variability OWA model to 

some extents, further researches may be focused on external 

accuracy of the model which could be calculated either by 

comparison of results with real earthquake damages (if happens 

in future) or by comparison to results obtained using other 

models of seismic vulnerability assessment. 
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