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ABSTRACT: 

 

Sensor fusion is to combine different sensor data from different sources in order to make a more accurate model. In this research, 

different sensors (Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, Silicon and GPS receiver) have been utilized to obtain 

different kinds of datasets to implement the multi-sensor system and comparing the accuracy of the each sensor with other sensors. 

The scope of this research is to estimate the current position and orientation of the Van. The Van's position can also be estimated by 

integrating its velocity and direction over time. To make these components work, it needs an interface that can bridge each other in a 

data acquisition module. The interface of this research has been developed based on using Labview software environment. Data have 

been transferred to PC via A/D convertor (LabJack) and make a connection to PC. In order to synchronize all the sensors, calibration 

parameters of each sensor is determined in preparatory step. Each sensor delivers result in a sensor specific coordinate system that 

contains different location on the object, different definition of coordinate axes and different dimensions and units. Different test 

scenarios (Straight line approach and Circle approach) with different algorithms (Kalman Filter, Least square Adjustment) have been 

examined and the results of the different approaches are compared together.  

 

1. INTRODUCTION 

In the current state-of-the-art, multi sensor systems play an 

important role in kinematic measurements and have many 

applications in navigation, machine guidance, mobile 

positioning system, monitoring and so on. Sensor fusion is to 

combine different sensor data from different sources in order to 

make a more accurate model. Positioning in the static mode is 

the old-fashioned and has been investigated since many years 

ago. However, precise positioning of the moving objects is still 

challenging issue and many researchers are working in this area 

of research. Measurement technique is so called kinematic if 

time is taken into account due to the movement of the object or 

the sensor (Foppe et al, 2004). Schwieger (2012) represents the 

correct definition of the real time as follow: “Real time 

capability means the provision of application-related results at 

the required point of time with the required quality”. Welsch & 

Heunecke (2001) defined four models (Identity model, Static 

model, Kinematic model and Dynamic model) to build reality 

with respect to geometry, time and acting forces whereas in 

kinematic model, time-related movements are described without 

consideration of acting forces. Multi sensor systems are divided 

in three main categories: Space-distributed systems, redundant 

systems and complementary systems (Schwieger, 2012). In this 

research, complementary system has been implemented which 

means different sensors acquire different measurement values to 

determine a target quantity. Schwieger (2008) investigated two 

multi sensor systems. Firstly, a high precise system which was 

provided by Allsat Company comprises multiple antenna Javad 

GNSS system and an inertial measurement unit with three 

vibration gyroscopes and three MEMS accelerometers. 

Secondly, the Modular Positioning System (MOPSY) which 

was developed by the Institute of Engineering Geodesy of 

University of Stuttgart and consisting of low cost GPS receiver 

in company of gyroscope, two odometers and an optical speed 

and distance sensor. This system has been developed based on 

assumption of uniform circle drive and using the Kalman Filter 

approach. Schweitzer (2012) implemented multi sensor systems 

comprises low cost sensors (GPS ( blox ANTARIS 4), 

Odometer, Accelerometer (XSENS) and Gyroscope (Silicon 

sensing CRS05)) and then, determined the current position and 

orientation of the vehicle by applying extended Kalman Filter 

and compared the final results with PDGPS. Hong and Wang 

(1994) utilized a Kalman filtering approach and fuzzy to 

integrate sensory data. In this research, different sensors 

(Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, 

Silicon and GPS receiver) have been utilized to get different 

kinds of datasets to implement the multi sensor systems and 

comparing the accuracy of the each sensor with other sensors. 

GPS can get the coordinates of the vehicle and the initial 

azimuth. The measurements of all the gyroscope sensors are 

rotation of the vehicle travelling and the distance which vehicle 

travelled during driving between each epoch. The measurement 

of the Optical Speed and Distance Sensor is the distance and 

velocity at each epoch. These sensors are attached to the Van. 

Bosch sensor and XSENS are sensitive sensors and should be 

attached to the levelled table in the centre of the gravity inside 

the vehicle. Therefore, XSENS, Bosch sensor and Silicon are 

mounted on the levelled table inside the car. Axes of Bosch 

sensor and XSENS must be aligned with the travel direction. 

Optical Speed sensor is attached to the back of the vehicle. 

Odometers are attached to wheels and GPS receiver is mounted 

on the top of the vehicle. The scope of this research is to 

estimate the current position and orientation of the Van. The 

Van equipped with a GPS unit that provides an estimate of the 

position and other sensors. The GPS estimate is likely to be 

very noisy and jump around at a high frequency, though always 

remaining relatively close to the real position. The Van's 

position can also be estimated by integrating its velocity and 

direction over time, determined by keeping track of the amount 

the accelerator is depressed and how much the steering wheel is 

turned. This is a technique known as dead reckoning. Typically, 
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dead reckoning will provide a very smooth estimate of the Van's 

position, but it will drift over time as small errors accumulate 

(Schwieger, 2009). To make these components work, it needs 

an interface that can bridge each other in a data acquisition 

module. The interface of this research has been developed based 

on using Labview software environment. Data have been 

transferred to PC via A/D convertor (LabJack) and make a 

connection to PC. Outputs of the most of sensors are voltage 

(analogue) and must be converted to the relevant unit. 

Therefore, it is necessary to convert analogue signals to digital 

signals due to making it readable for computers. In order to 

process at a defined point of time, real time operating system is 

needed. Since data request is not possible at defined point of 

time due to usage of operating system from resources, therefore 

precise synchronization has been lost. In order to synchronize 

all the sensors, calibration parameters of each sensor is 

determined in preparatory step. Knowing the exact calibration 

parameters of each sensor is necessary and wrong values will be 

affected on our analysis. In addition, synchronisation was 

realised by using the GPS time stamp. Each sensor delivers 

result in a sensor specific coordinate system that contains 

different location on the object, different definition of 

coordinate axes and different dimensions and units. In general, 

the Kalman Filter is used to remove disturbances caused by the 

measurement instruments and processes (Schweitzer, 2012). 

Thus, it is useful to filter raw measuring observations. In this 

research, different test scenarios (Straight line approach and 

Circle approach) with different algorithms (Kalman Filter, Least 

square Adjustment) have been examined and the results of the 

different approaches are compared together. In order to make 

more familiar with corresponding sensors within the multi 

sensor system, the brief description of them has been presented 

in the following sub sections. 

1.1 Optical Speed and Distance Sensor 

The measurement of the Optical Speed and Distance Sensor is 

the distance and velocity at each epoch. In this sensor, 

measurement principle is based on Optical correlation and raw 

data is Voltage (analogue).  

1.2 Bosch Sensor 

Measurement values of Bosch sensor are Lateral Acceleration 

and yaw rate. The unit of raw data is voltage (analogue) and 

desired unit are  and . Drive motion is in the x direction 

and Sensing motion is in the y direction. The z axis is the 

sensitive angular rate input axis (Neul et al, 2007) 

 

Figure 1. Axis of Bosch Sensor (Neul et al, 2007) 

 

In this project, we use this sensor to measure acceleration and 

rotation angle. The measurement principles are based on MEMS 

and Turning fork. 

1.3 Odometer 

In this sensor, measurement value is speed and desired unit is 

m/s. Data acquisition is based on counting of impulses and 

digital. We used this sensor for measuring rotation angle and 

distance. Odometer is connected directly to a driving wheel 

shaft. Resolution is defined by number of impulses per 

revolution. 

1.4 XSENS 

The Mti is the gyro–enhanced MEMS based Inertial 

Measurement Unit (IMU). Attitude and heading is referenced 

with gravity and the earth magnetic field. The Mti contains 

gyroscopes, accelerometers and magnetometers in 3D. Outputs 

of this sensor are 3D Orientation (360 degree), 3D acceleration, 

3D rate of turn and 3D magnetic field. We connect this sensor 

with USB to PC. Furthermore, we can access directly to 

measurement values. In this project, we use this sensor to 

measure acceleration and rotation angle. 

1.5 Silicon 

In this project, we used silicon to measure rotation angle. It is 

robust and affordable mass-produced gyroscope for automotive 

and commercial customers. Angular rate sensors are used 

wherever rate of turn sensing is required without a fixed point 

of reference. The Output of this sensor is DC voltage that 

proportional to the rate of turn and input voltage. 

1.6 GPS Receiver 

The Global Positioning System (GPS) is a U.S. space-

based global navigation satellite system. It provides 

reliable positioning, navigation, and timing services to 

worldwide users on a continuous basis in all weather, day and 

night, anywhere on or near the Earth which can observe four or 

more GPS satellites. GPS satellites broadcast signals from space 

that GPS receivers use to provide three-dimensional location 

(latitude, longitude, and altitude) plus precise time. 

 
 

Figure 2. Sensors (a) Optical Speed and Distance Sensor, (b) 

Bosch Sensor, (c) Odometer, (d) XSENS, (e) Silicon, (f) GPS 

Receiver 

 

2. METHODOLOGY 

Data acquisition is the process of sampling of real world 

physical conditions and conversion the resulting samples into 

digital numeric values that can be manipulated by computer for 

further purposes. Data acquisition system involves both 

hardware and software which works together to capture raw 

physical data into interpretable values like speed, orientation, 

position, etc. The data acquisition module in general consists of 

three parts which are as follows: data acquisition, data 

Processing and data storing. In this research, in order to 

synchronize all the sensors, calibration parameters of each 

sensor was determined in preparatory step. Therefore, the 

interface was developed using Labview software environment 

to transfer analogue data to PC and performing calibration. 

Thereafter, Matlab software has been utilized to compute the 

position and orientation of the vehicle based on Kalman Filter – 

Standard Kinematic Approach and Least Square Adjustment in 

straight line and circle drive. In the next sub section, 

development of algorithms is presented and discussed in detail. 
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2.1 Development of algorithms  

In general, typical methods and techniques to determine the 

trajectories are time series analysis, regression and least square 

adjustment as well as filter techniques, where the Kalman filter 

is of particular importance (Kuhlmann, 2004). The Kalman 

filter is essentially a set of mathematical equations that 

implement a predictor-corrector type estimator that is optimal in 

the sense and minimizing the estimated error covariance when 

some presumed conditions are met. The Kalman Filter can be 

divided into two steps: the prediction and the correction. The 

first step is to predict the state from the previous epoch with the 

dynamic model. In the second step the predicted state is 

corrected with the observation model, so that the error 

covariance of the estimator is minimized, which means the 

Kalman Filter is an optimal estimator. The dynamic system and 

the observation system are described in time domain. State 

vector at epoch k+1 can be predicted from the state vector at 

previous epoch K. Then we replace the parameter with the 

predicted state vector in the observation equation and we get the 

predicted observation. The difference between predicted 

observation and actual observation which is derived from our 

measurements is so-called innovation. Then using gain matrix K 

to combine the innovation with the predicted vector to get the 

updated state vector which fulfill the condition that the 

covariance of updated state vector is minimized. The advantage 

of the Kalman filter concept is that the computation is 

performed in real-time with low computational effort. The 

weighting of the measurement and disturbance allows a flexible 

adjusting of the system (Kuhlmann, 2012). 

 
 

Figure 3. Real-time calculation process (Kuhlmann, 2012) 

 

2.1.1 Kalman Filter – Standard Kinematic Approach: In 

this approach, the updated state vector includes 4 elements that 

      correspond to the coordinates of the Van at epoch k and 

        indicate the velocity of the Van at epoch k. (Schwieger, 

2009) 
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Figure 4. Kalman Filter - Standard Kinematic approach 

(Schwieger, 2009) 

            

Linear prediction: 

                                  

ksks

ksks

ksksks

ksksks

yy

xx

ytyy

xtxx

,1,

,1,

,,1,

,,1,

ˆ

ˆ

ˆ.ˆ

ˆ.ˆ

























                             (2) 

 

 

From linear prediction (2), we can find out that for calculating 

the predicted state vector at epoch k+1 , we need to get updated 

state vector at epoch k plus the time differences between epoch 

k+1 and epoch k in addition to velocities in both direction x and 

y at the epoch k. 
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The vector of observation of the Kalman Filter - Standard 

Kinematic approach is: 

 

 TsadsBoschsXsenssodosBoschSiliconXsensodoGPSYGPSXl 



   (4) 

 

Where        : In horizontal system 

                   : related to centre of gravity 

                 : rotation angle of sensors 

                 : distance of sensors 

 

Due to independency of modular multi sensors, cofactor matrix 

of observations has been considered diagonal and off diagonal 

elements of corresponding matrix is zero. The design matrix A 

of the Kalman Filter - Standard Kinematic approach is:  

 

                       (5) 

 

In the prediction step, the position of next epoch can be 

predicted from the last updated state vector by using the 

following function: 
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Where  1ky : Predicted state vector at epoch (k+1) 

               kŷ : Updated state factor at epoch (k) 

                T : Transition matrix 

               B  : Matrix of acting forces 

               u  : Vector of acting forces 

               S : Matrix of disturbing quantities 

               w : Vector of disturbing quantities 

















































































































































































)sin(.)cos(.)sin()cos(

)sin(.)cos(.)sin()cos(

)sin(.)cos(.)sin()cos(

)sin(.)cos(.)sin()cos(

)cos(.)sin(.)cos()sin(

)cos(.)sin(.)cos()sin(

)cos(.)sin(.)cos()sin(

)cos(.)sin(.)cos()sin(
0010

0001

1111

1111

1111

1111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

kkkk

kkkk

kkkk

kkkk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

tt

tt

tt

tt

s

t

s

t

ss

s

t

s

t

ss

s

t

s

t

ss

s

t

s

t

ss

A

















International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W3, 2013
SMPR 2013, 5 – 8 October 2013, Tehran, Iran

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 311



 

 

In this algorithm, we used the acceleration from the Bosch 

sensor. In addition, the effect of acting forces has been 

neglected. 
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The Algorithm implemented within the following steps: 

 

Step 1: calculating predicted state vector: 

 

                              
wSyTy kk .ˆ.1                                          (9) 

 

Step 2: calculating cofactor matrix of predicted state vector: 
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Step 3: calculating the vector of innovations: 

 

                              111 .   kkk yAld
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Where  1kl : Vector of the observations 

                     1kl : Predicted vector of observations 

 

Step 4: calculating the cofactor matrix of innovations: 

 

                 
T
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Step 5: calculating the gain matrix K: 
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Step 6: calculating the updated state vector (epoch k+1) 
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Step 7: calculating the cofactor matrix of updated state vector 

(epoch k+1) 
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Figure 5. Kalman filter cycle (Schweitzer, 2012) 

 

2.1.2 Least-square Adjustment – Straight Line 

Approach: The general form of least square adjustment model 

is:     

 

                                                                                   (16) 

 

Where  y = observation vector 

            A = design matrix 

             x = unknown vector 

              e = error vector   

 

Observation vector for each epoch includes following 

parameters:                                                    

             and target quantities are as follows:   ,   ,   . In order 

to determine target quantities, the relationship between 

observation vector and unknown vector should be defined. 

Therefore, these relationships are determined as following 

models:  

 

                
         
         

  

               
             

  

             

                                                                                 (17) 

 

 

Design matrix is computed by doing derivative with respect to 

the unknown parameters and substitution of the approximate 

values from above equations. Before performing derivation, 

equations (17) must be linearized by using Taylor expansion. 

Then, vector of reduced observation ( ) is computed by 

subtracting vector of approximate observations (    from vector 

of observations (  . Thereafter, vector of reduced adjusted 

parameters and vector of adjusted parameters are computed 

respectively as follows: 

 

 

                                                                                   
                                                                                      (18) 

 

 

This procedure is carried out in the iteration process until the 

pre-defined accuracy is met. After ending up the iterations, the 

final value of target quantities is calculated. The rest of 

computation includes computation of vector of residuals, 

cofactor matrix of adjusted observations, cofactor matrix of 

residuals and vector of reduced adjusted observations as 

follows: 
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2.1.3 Least Square Adjustment – Circle Approach: As the 

drive mode is changing from straight line to circle, it would be 

more accurate to utilize circle drive model of least square 

adjustment. This model is quite useful for significant rotation or 

changing direction of the driving path. In order to detect the 

rotation in the driving path, Bosch, Silicon and odometer 

sensors have been used. Then, by considering pre-defined 

threshold (e.g. 0.01 radian), we can distinguish straight line 

from circle drive and applying appropriate least square 

adjustment. Relationship between the parameters (x, y,  ) and 

all the observations (X, Y,   , ∆φ, ∆s) is not linear. Therefore, 

we have to do the linearization and set approximate values for 

least square Method. In this research, GPS observations have 

been considered as approximate values. 
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Figure 6. Least Square Adjustment - Circle approach 

(Schwieger, 2009) 

 

3. EXPERIMENTS AND RESULTS 

3.1 Kalman Filter – Standard Kinematic Approach 

In order to obtain the position of trajectory, we should make an 

assumption for the cofactor matrix of observation. Due to 

special specification of each sensor and deriving better results, 

we considered more weights for computing rotation angle of 

Bosch sensor and distance from Odometer and coordinate from 

GPS. The values of this matrix are as follows: 

 
     

                  

                     

             

                       

                   

             ,       

              

       

                 

               

                  
          

 

 
 

Figure 7. Trajectory of the Vehicle – All sensors vs. GPS, 

Straight line (left), Circle drive (Right) 

 
 

Figure 8. Displacement between GPS and modular multi 

sensors, Straight line (left), Circle drive (Right) 

 

Type of drive Mean value of    

(m) 

Mean value of    

(m) 

Circle drive -0.2176  -0.1163 

 Straight line -0.0383 0.1281 

 

Table 1. Statistical differences of different drive approaches 

 

 
 

Figure 9. Estimated velocity of modular multi sensors vs. 

Optical speed and distance sensor, Straight line (left), Circle 

drive (Right) 

 

The results interpretation from this method is made base on two 

assumptions. In the first case study, has been considered to put 

more weights for rotation angle of Bosch sensor and distance 

from Odometer and GPS. From this considerations the 

displacement between GPS and calculated values are in the 

range 0-3 meter for circle drive scenario and 0-1.2 meter for 

straight line approach. In the second case study considered to 

increase the weight on the GPS, rotation angle of Bosch sensor 

and distance from Odometer. The results show that the 

differences with GPS trajectory become quite smaller around    

0-0.4 meter both for circle drive and straight line approach. But 

the differences for velocity become higher comparing to the 

first case study. 

 

3.2 Least-square Adjustment – Straight Line Approach 

 
 

Figure 10. Trajectory of the Vehicle – All sensors vs. GPS, 

Straight line 
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Parameters Mean value  Standard deviation 

x axis 0.3564 (m)  0.2378 (m) 

 y axis -0.4053 (m) 0.2589 (m) 

Azimuth -0.6158 (deg) 0.0063 (deg) 

 

Table 2. Statistical differences between GPS and modular multi 

sensor 

 

3.3 Least Square Adjustment – Circle Approach 

In this approach, we considered rotation measurement from 

Odometer as the approximated azimuth to avoid sharp 

fluctuation of the GPS observation. This is used to improve the 

azimuth results as the azimuth plays an important role in our 

computation even more than distance measurement. 

 

 
 

Figure 11. Trajectory of the Vehicle – All sensors vs. GPS, 

Circle drive 
 

 

 
 

Figure 12. Displacement between GPS and adjusted values from 

all sensors. Differences at x-axis (left), Differences at y-axis 

(right) 

 

From figure 12, we can realise that the achieved results from 

this approach is much better than previous approaches. The 

displacement between GPS and calculated values from other 

sensors in x direction are in the range -0.02 – 0.02 and 

displacement between GPS and calculated values from other 

sensors in y direction are in the range -0.03 – 0.03 which seems 

quite good in comparison with previous approaches. 

 

4. CONCLUSION 

In this research, different test scenarios (Straight line approach 

and Circle approach) with different algorithms (Kalman Filter, 

Least square Adjustment) have been examined and the results of 

the different approaches are compared together. From the 

achieved results, we can realise that the least square adjustment 

for circle drive approach leads to the best result among the 

others. On the other hand the results from Kalman filter and 

least square for the other approaches is also quite reasonable 

and variying in decimeter until centimeter fraction. 

Furthermore, if we merely utilize GPS observation, the 

measurement of azimuth is not very accurate and that they may 

relate to multipath or cycle slip errors and in some cases, 

leading to unexpected and truncation errors. Therefore, in this 

research, in order to reduce the effects of the aforementioned 

errors, modular multi sensor have been used and tried to obtain 

more accurate position and orientation of the trajectory.  
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