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ABSTRACT:

Sensor fusion is to combine different sensor data from different sources in order to make a more accurate model. In this research,
different sensors (Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, Silicon and GPS receiver) have been utilized to obtain
different kinds of datasets to implement the multi-sensor system and comparing the accuracy of the each sensor with other sensors.
The scope of this research is to estimate the current position and orientation of the Van. The Van's position can also be estimated by
integrating its velocity and direction over time. To make these components work, it needs an interface that can bridge each other in a
data acquisition module. The interface of this research has been developed based on using Labview software environment. Data have
been transferred to PC via A/D convertor (LabJack) and make a connection to PC. In order to synchronize all the sensors, calibration
parameters of each sensor is determined in preparatory step. Each sensor delivers result in a sensor specific coordinate system that
contains different location on the object, different definition of coordinate axes and different dimensions and units. Different test
scenarios (Straight line approach and Circle approach) with different algorithms (Kalman Filter, Least square Adjustment) have been
examined and the results of the different approaches are compared together.

1. INTRODUCTION

In the current state-of-the-art, multi sensor systems play an
important role in kinematic measurements and have many
applications in navigation, machine guidance, mobile
positioning system, monitoring and so on. Sensor fusion is to
combine different sensor data from different sources in order to
make a more accurate model. Positioning in the static mode is
the old-fashioned and has been investigated since many years
ago. However, precise positioning of the moving objects is still
challenging issue and many researchers are working in this area
of research. Measurement technique is so called kinematic if
time is taken into account due to the movement of the object or
the sensor (Foppe et al, 2004). Schwieger (2012) represents the
correct definition of the real time as follow: “Real time
capability means the provision of application-related results at
the required point of time with the required quality”. Welsch &
Heunecke (2001) defined four models (ldentity model, Static
model, Kinematic model and Dynamic model) to build reality
with respect to geometry, time and acting forces whereas in
kinematic model, time-related movements are described without
consideration of acting forces. Multi sensor systems are divided
in three main categories: Space-distributed systems, redundant
systems and complementary systems (Schwieger, 2012). In this
research, complementary system has been implemented which
means different sensors acquire different measurement values to
determine a target quantity. Schwieger (2008) investigated two
multi sensor systems. Firstly, a high precise system which was
provided by Allsat Company comprises multiple antenna Javad
GNSS system and an inertial measurement unit with three
vibration gyroscopes and three MEMS accelerometers.
Secondly, the Modular Positioning System (MOPSY) which
was developed by the Institute of Engineering Geodesy of
University of Stuttgart and consisting of low cost GPS receiver
in company of gyroscope, two odometers and an optical speed
and distance sensor. This system has been developed based on

assumption of uniform circle drive and using the Kalman Filter
approach. Schweitzer (2012) implemented multi sensor systems
comprises low cost sensors (GPS (ublox ANTARIS 4),
Odometer, Accelerometer (XSENS) and Gyroscope (Silicon
sensing CRS05)) and then, determined the current position and
orientation of the vehicle by applying extended Kalman Filter
and compared the final results with PDGPS. Hong and Wang
(1994) utilized a Kalman filtering approach and fuzzy to
integrate sensory data. In this research, different sensors
(Optical Speed Sensor, Bosch Sensor, Odometer, XSENS,
Silicon and GPS receiver) have been utilized to get different
kinds of datasets to implement the multi sensor systems and
comparing the accuracy of the each sensor with other sensors.
GPS can get the coordinates of the vehicle and the initial
azimuth. The measurements of all the gyroscope sensors are
rotation of the vehicle travelling and the distance which vehicle
travelled during driving between each epoch. The measurement
of the Optical Speed and Distance Sensor is the distance and
velocity at each epoch. These sensors are attached to the Van.
Bosch sensor and XSENS are sensitive sensors and should be
attached to the levelled table in the centre of the gravity inside
the vehicle. Therefore, XSENS, Bosch sensor and Silicon are
mounted on the levelled table inside the car. Axes of Bosch
sensor and XSENS must be aligned with the travel direction.
Optical Speed sensor is attached to the back of the vehicle.
Odometers are attached to wheels and GPS receiver is mounted
on the top of the vehicle. The scope of this research is to
estimate the current position and orientation of the Van. The
Van equipped with a GPS unit that provides an estimate of the
position and other sensors. The GPS estimate is likely to be
very noisy and jump around at a high frequency, though always
remaining relatively close to the real position. The Van's
position can also be estimated by integrating its velocity and
direction over time, determined by keeping track of the amount
the accelerator is depressed and how much the steering wheel is
turned. This is a technique known as dead reckoning. Typically,
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dead reckoning will provide a very smooth estimate of the Van's
position, but it will drift over time as small errors accumulate
(Schwieger, 2009). To make these components work, it needs
an interface that can bridge each other in a data acquisition
module. The interface of this research has been developed based
on using Labview software environment. Data have been
transferred to PC via A/D convertor (LabJack) and make a
connection to PC. Outputs of the most of sensors are voltage
(analogue) and must be converted to the relevant unit.
Therefore, it is necessary to convert analogue signals to digital
signals due to making it readable for computers. In order to
process at a defined point of time, real time operating system is
needed. Since data request is not possible at defined point of
time due to usage of operating system from resources, therefore
precise synchronization has been lost. In order to synchronize
all the sensors, calibration parameters of each sensor is
determined in preparatory step. Knowing the exact calibration
parameters of each sensor is necessary and wrong values will be
affected on our analysis. In addition, synchronisation was
realised by using the GPS time stamp. Each sensor delivers
result in a sensor specific coordinate system that contains
different location on the object, different definition of
coordinate axes and different dimensions and units. In general,
the Kalman Filter is used to remove disturbances caused by the
measurement instruments and processes (Schweitzer, 2012).
Thus, it is useful to filter raw measuring observations. In this
research, different test scenarios (Straight line approach and
Circle approach) with different algorithms (Kalman Filter, Least
square Adjustment) have been examined and the results of the
different approaches are compared together. In order to make
more familiar with corresponding sensors within the multi
sensor system, the brief description of them has been presented
in the following sub sections.

1.1 Optical Speed and Distance Sensor

The measurement of the Optical Speed and Distance Sensor is
the distance and velocity at each epoch. In this sensor,
measurement principle is based on Optical correlation and raw
data is VVoltage (analogue).

1.2 Bosch Sensor

Measurement values of Bosch sensor are Lateral Acceleration
and yaw rate. The unit of raw data is voltage (analogue) and

desired unit are Ve and 4 Drive motion is in the x direction
and Sensing motion is in the y direction. The z axis is the
sensitive angular rate input axis (Neul et al, 2007)

Vi Xdrive
Q

Qcan Ydetection
Figure 1. Axis of Bosch Sensor (Neul et al, 2007)

In this project, we use this sensor to measure acceleration and
rotation angle. The measurement principles are based on MEMS
and Turning fork.

1.3 Odometer

In this sensor, measurement value is speed and desired unit is
m/s. Data acquisition is based on counting of impulses and
digital. We used this sensor for measuring rotation angle and
distance. Odometer is connected directly to a driving wheel
shaft. Resolution is defined by number of impulses per
revolution.

1.4 XSENS

The Mti is the gyro-enhanced MEMS based Inertial
Measurement Unit (IMU). Attitude and heading is referenced
with gravity and the earth magnetic field. The Mti contains
gyroscopes, accelerometers and magnetometers in 3D. Outputs
of this sensor are 3D Orientation (360 degree), 3D acceleration,
3D rate of turn and 3D magnetic field. We connect this sensor
with USB to PC. Furthermore, we can access directly to
measurement values. In this project, we use this sensor to
measure acceleration and rotation angle.

1.5 Silicon

In this project, we used silicon to measure rotation angle. It is
robust and affordable mass-produced gyroscope for automotive
and commercial customers. Angular rate sensors are used
wherever rate of turn sensing is required without a fixed point
of reference. The Output of this sensor is DC voltage that
proportional to the rate of turn and input voltage.

1.6 GPS Receiver

The Global Positioning System (GPS) is a U.S. space-
based global navigation satellite system. It provides
reliable positioning, navigation, and timing services to

worldwide users on a continuous basis in all weather, day and
night, anywhere on or near the Earth which can observe four or
more GPS satellites. GPS satellites broadcast signals from space
that GPS receivers use to provide three-dimensional location
(latitude, longitude, and altitude) plus precise time.

Figure 2. Sensors (a) Optical Speed and Distance Sensor, (b)
Bosch Sensor, (c) Odometer, (d) XSENS, (e) Silicon, (f) GPS
Receiver

2. METHODOLOGY

Data acquisition is the process of sampling of real world
physical conditions and conversion the resulting samples into
digital numeric values that can be manipulated by computer for
further purposes. Data acquisition system involves both
hardware and software which works together to capture raw
physical data into interpretable values like speed, orientation,
position, etc. The data acquisition module in general consists of
three parts which are as follows: data acquisition, data
Processing and data storing. In this research, in order to
synchronize all the sensors, calibration parameters of each
sensor was determined in preparatory step. Therefore, the
interface was developed using Labview software environment
to transfer analogue data to PC and performing calibration.
Thereafter, Matlab software has been utilized to compute the
position and orientation of the vehicle based on Kalman Filter —
Standard Kinematic Approach and Least Square Adjustment in
straight line and circle drive. In the next sub section,
development of algorithms is presented and discussed in detail.
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2.1 Development of algorithms

In general, typical methods and techniques to determine the
trajectories are time series analysis, regression and least square
adjustment as well as filter techniques, where the Kalman filter
is of particular importance (Kuhlmann, 2004). The Kalman
filter is essentially a set of mathematical equations that
implement a predictor-corrector type estimator that is optimal in
the sense and minimizing the estimated error covariance when
some presumed conditions are met. The Kalman Filter can be
divided into two steps: the prediction and the correction. The
first step is to predict the state from the previous epoch with the
dynamic model. In the second step the predicted state is
corrected with the observation model, so that the error
covariance of the estimator is minimized, which means the
Kalman Filter is an optimal estimator. The dynamic system and
the observation system are described in time domain. State
vector at epoch k+1 can be predicted from the state vector at
previous epoch K. Then we replace the parameter with the
predicted state vector in the observation equation and we get the
predicted observation. The difference between predicted
observation and actual observation which is derived from our
measurements is so-called innovation. Then using gain matrix K
to combine the innovation with the predicted vector to get the
updated state vector which fulfill the condition that the
covariance of updated state vector is minimized. The advantage
of the Kalman filter concept is that the computation is
performed in real-time with low computational effort. The
weighting of the measurement and disturbance allows a flexible
adjusting of the system (Kuhlmann, 2012).

Trigger
] i

Sensordata Gps :
ﬁ i o
«t aps ‘ i Position
¥ ; O PPS i[O __kHz
Ll xt Gpse
S;:ﬁr ’ Dead- * ¥ Df:d-«eckemny
. reckoning
Kalman-filter V4
r 3 F N !
ins
5| Odometer

Figure 3. Real-time calculation process (Kuhlmann, 2012)

2.1.1 Kalman Filter — Standard Kinematic Approach: In
this approach, the updated state vector includes 4 elements that
X,y correspond to the coordinates of the Van at epoch k and
Dy, Dy indicate the velocity of the Van at epoch k. (Schwieger,
2009)

y=F 3y o B )

—»

Figure 4. Kalman Filter - Standard Kinematic approach
(Schwieger, 2009)

Linear prediction:
)_(s,k+1 = Rs,k +AtXs k

ys,k+1 = 9s,k +At-§/s,k
)

Xs,k+1 = Xs,k

ys,k+1 = ys,k

From linear prediction (2), we can find out that for calculating
the predicted state vector at epoch k+1 , we need to get updated
state vector at epoch k plus the time differences between epoch
k+1 and epoch k in addition to velocities in both direction x and
y at the epoch k.

At.)T(k = At.)%k,l + O.S.Atz.;ik

% =V 3

SA('k =4k

The vector of observation of the Kalman Filter - Standard
Kinematic approach is:

4
I=[XGPs YoPs Agodo Apxsens Adsilicon AvBosch ASodo ASxsens ASBosch ASsadl' ( )

Where X;ps: In horizontal system
Yeps: related to centre of gravity
A@: rotation angle of sensors
AS: distance of sensors

Due to independency of modular multi sensors, cofactor matrix
of observations has been considered diagonal and off diagonal
elements of corresponding matrix is zero. The design matrix A
of the Kalman Filter - Standard Kinematic approach is:

1 0 0 0
0 1 0 0_
-sin(g,,) cos@,,) —Atsin(g,,) At.cos(g,,)
A§k+l A§k+l A§k+l A§k+1
—sin(@,..) cos@.,) —Atsin(g,,) At.cos@,,)
Agk\l Agk\] A§k<1 A§k>1
*Sin(@vl) COS(@A) 7At-5in((ﬁ<+1) At-cos@m)
A = A§k+l A§k+l A§k+l A§k+1
—sin(@,..) cos@.,) -—Atsin(g,,) At.cos@,,)
Agk\] Agk\] A§k41 Agkrl
cos@,,) sin(@.,) Atcos@,.,) Atsin(g,,)
cos(@,,) sin(g,.,) Atcosp,,) Atsin(g,,)
cos@,,) sin(g.,) Atcos@,,) Atsin(g,,)
cos@.,) sin(p.,) Atcos@,,) Atsin(g,.,) (5)

In the prediction step, the position of next epoch can be
predicted from the last updated state vector by using the
following function:

Vs =T.Y¢ +Bu+Sw (6)

Where .4 : Predicted state vector at epoch (k+1)

Yk : Updated state factor at epoch (k)
T : Transition matrix

B : Matrix of acting forces

u : Vector of acting forces

S : Matrix of disturbing quantities

w : Vector of disturbing quantities
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In this algorithm, we used the acceleration from the Bosch
sensor. In addition, the effect of acting forces has been
neglected.
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The Algorithm implemented within the following steps:
Step 1: calculating predicted state vector:

Yk1 =T .Jk +Sw 9)
Step 2: calculating cofactor matrix of predicted state vector:

Qpy k1 =TQyyk TT +SQuw-S"

Assume: Quw=1

(10)

Step 3: calculating the vector of innovations:
d =lg+1— A1V (11)

Where Iy, : Vector of the observations

k.1 : Predicted vector of observations
Step 4: calculating the cofactor matrix of innovations:
Qdd,k+1=Q||,k+1+Ak+1-QW,k+1-A1L1 (12)
Step 5: calculating the gain matrix K:
Kicr1 = Qpy k1At Qg
k+1= Qg k1A +1Qud k41 (13)
Step 6: calculating the updated state vector (epoch k+1)

Yi+1 = Yk+1 + K i (14)

Step 7: calculating the cofactor matrix of updated state vector
(epoch k+1)

T
Qgy,k+1 = Qyy k+1 — Kk+1:Qdd k+1-Ky 11 (15)
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Figure 5. Kalman filter cycle (Schweitzer, 2012)

2.12 Least-square Adjustment - Straight Line
Approach: The general form of least square adjustment model
is:

y=Ax+e (16)

Where y = observation vector
A = design matrix
X = unknown vector
e = error vector

Observation vector for each epoch includes following
paramEterS: XGPS' YGPS' A(pgyr' A‘podo' Sodm Ssadf Saco 55\1(—1’
Yi—1, Pr—1 and target quantities are as follows: %, ¥, . In order
to determine target quantities, the relationship between
observation vector and unknown vector should be defined.
Therefore, these relationships are determined as following
models:

Ap = Qy4q — arctan <y_—k+1 _ }:k)
X1 — Xk
As =y Frr1 — 2% + Gear — i)?
Ax = Xyiq — X
Ay = Vi1 — I (17

Design matrix is computed by doing derivative with respect to
the unknown parameters and substitution of the approximate
values from above equations. Before performing derivation,
equations (17) must be linearized by using Taylor expansion.
Then, vector of reduced observation (I) is computed by
subtracting vector of approximate observations (L,) from vector
of observations (L). Thereafter, vector of reduced adjusted
parameters and vector of adjusted parameters are computed
respectively as follows:

9 = (ATPA)T1ATPL
P=Y,+9 (18)

This procedure is carried out in the iteration process until the
pre-defined accuracy is met. After ending up the iterations, the
final value of target quantities is calculated. The rest of
computation includes computation of wvector of residuals,
cofactor matrix of adjusted observations, cofactor matrix of
residuals and vector of reduced adjusted observations as
follows:

v=Ay-1
Qi; = A.(ATPA)™1.AT
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Quvy = Qu — Qi
I=1-v (19)

2.1.3  Least Square Adjustment — Circle Approach: As the
drive mode is changing from straight line to circle, it would be
more accurate to utilize circle drive model of least square
adjustment. This model is quite useful for significant rotation or
changing direction of the driving path. In order to detect the
rotation in the driving path, Bosch, Silicon and odometer
sensors have been used. Then, by considering pre-defined
threshold (e.g. 0.01 radian), we can distinguish straight line
from circle drive and applying appropriate least square
adjustment. Relationship between the parameters (X, y, ¢) and
all the observations (X, Y, @, Ag, As) is not linear. Therefore,
we have to do the linearization and set approximate values for
least square Method. In this research, GPS observations have
been considered as approximate values.

Ap +v = (arctan (M) - @k) .2

Xk+1—Rk
AS + Vv =/ Rir1 — Ri)? + T — )2 (20)

XA

—

Figure 6. Least Square Adjustment - Circle approach
(Schwieger, 2009)

3. EXPERIMENTS AND RESULTS
3.1 Kalman Filter — Standard Kinematic Approach

In order to obtain the position of trajectory, we should make an
assumption for the cofactor matrix of observation. Due to
special specification of each sensor and deriving better results,
we considered more weights for computing rotation angle of
Bosch sensor and distance from Odometer and coordinate from
GPS. The values of this matrix are as follows:

2 — 2 2 — 2 2 — 2
szaps = 0.00001 rr; ";Yaps =0.00001m 'Zwazsmvs =0.1rad ,2
Ohgsuicon = 0-1 rad » Ohpposen = 0-0001 rad?, Orpoq, = 0-01 rad®,

0% spns = 0.01m%,6¢  =001m? 0, =0.00001m?cf  =0.01m?

crt z e : st
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Figure 7. Trajectory of the Vehicle — All sensors vs. GPS,
Straight line (left), Circle drive (Right)
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Figure 8. Displacement between GPS and modular multi
sensors, Straight line (left), Circle drive (Right)

Type of drive | Mean value of Ax | Mean value of Ay
(m) (m)
Circle drive -0.2176 -0.1163
Straight line -0.0383 0.1281

Table 1. Statistical differences of different drive approaches

C!

Figure 9. Estimated velocity of modular multi sensors vs.
Optical speed and distance sensor, Straight line (left), Circle
drive (Right)

The results interpretation from this method is made base on two
assumptions. In the first case study, has been considered to put
more weights for rotation angle of Bosch sensor and distance
from Odometer and GPS. From this considerations the
displacement between GPS and calculated values are in the
range 0-3 meter for circle drive scenario and 0-1.2 meter for
straight line approach. In the second case study considered to
increase the weight on the GPS, rotation angle of Bosch sensor
and distance from Odometer. The results show that the
differences with GPS trajectory become quite smaller around
0-0.4 meter both for circle drive and straight line approach. But
the differences for velocity become higher comparing to the
first case study.

3.2 Least-square Adjustment — Straight Line Approach

Topector of e Ve

Figure 10. Trajectory of the Vehicle — All sensors vs. GPS,
Straight line
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Parameters Mean value Standard deviation
X axis 0.3564 (m) 0.2378 (m)
y axis -0.4053 (m) 0.2589 (m)
Azimuth -0.6158 (deg) 0.0063 (deg)

Table 2. Statistical differences between GPS and modular multi
sensor

3.3 Least Square Adjustment — Circle Approach

In this approach, we considered rotation measurement from
Odometer as the approximated azimuth to avoid sharp
fluctuation of the GPS observation. This is used to improve the
azimuth results as the azimuth plays an important role in our
computation even more than distance measurement.

x 10 Trajetory of the Venscie

All sansors
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yim x 10"

Figure 11. Trajectory of the Vehicle — All sensors vs. GPS,
Circle drive

Figure 12. Displacement between GPS and adjusted values from
all sensors. Differences at x-axis (left), Differences at y-axis

(right)

From figure 12, we can realise that the achieved results from
this approach is much better than previous approaches. The
displacement between GPS and calculated values from other
sensors in x direction are in the range -0.02 — 0.02 and
displacement between GPS and calculated values from other
sensors in y direction are in the range -0.03 — 0.03 which seems
quite good in comparison with previous approaches.

4. CONCLUSION

In this research, different test scenarios (Straight line approach
and Circle approach) with different algorithms (Kalman Filter,
Least square Adjustment) have been examined and the results of
the different approaches are compared together. From the
achieved results, we can realise that the least square adjustment
for circle drive approach leads to the best result among the
others. On the other hand the results from Kalman filter and
least square for the other approaches is also quite reasonable
and variying in decimeter until centimeter fraction.
Furthermore, if we merely utilize GPS observation, the
measurement of azimuth is not very accurate and that they may
relate to multipath or cycle slip errors and in some cases,

leading to unexpected and truncation errors. Therefore, in this
research, in order to reduce the effects of the aforementioned
errors, modular multi sensor have been used and tried to obtain
more accurate position and orientation of the trajectory.
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