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ABSTRACT: 

Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields 

for many years. By development of commercial digital cameras and modern image processing techniques, close range 

photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and 

archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-

dimensional (2D) images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously 

estimating both 3D geometry (structure) and camera pose (motion), it is commonly known as structure from motion (SfM). In this 

research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we 

should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. 

After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation 

(projective reconstruction). Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. 

The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean 

reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely 

bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower). 

 

1. INTRODUCTION 

There are many ways to mapping and obtain 3D models of the 

world around us and every approach has some advantage and 

disadvantage. In this regard some approaches are automatic, 

semi-automatic and some are non-automatic. Mostly non-

automatic and semi-automatic manners are time-consuming, 

costly and need more than one operator. On the other hand, 

automatic approaches are very fast, simple and need one 

operator to perform. One of these methods is Close Range 

Photogrammetry. Digital close range photogrammetry is a low-

cost technique for accurately measuring objects directly from 

digital images captured with a camera at close range.  

Image-based modeling uses digital cameras and requires a 

mathematical formulation to transform 2D image coordinates 

into 3D information. Images contain all the useful information 

to form geometry and texture for a 3D modeling application 

(Luigi Barazzetti et al., 2010). Automatic techniques can be 

used to track the image features and solve it mathematically by 

using Structure from Motion (SfM) techniques, which refer to 

the computation of the camera stations and viewing directions 

(imaging configuration) and the 3D object points from at least 

two images (Alsadik et al., 2012). 

Most of earlier studies in this field assume that the intrinsic 

parameters of the camera (focal length, image center and aspect 

ratio) are known. Computing camera motion in this case is a 

well-known problem in photogrammetry, called relative 

orientation (Atkinson, 1996). Some of them (Boufama et al., 

1993) put some constraints on the reconstruction data in order 

to get reconstruction in the Euclidean space. Such constraints 

arise from knowledge of the scene: location of points, 

geometrical constraints on lines, etc. The paper of  Barazzetti et 

al (2010) focused on calibrated camera. Cronk et al (2006) used 

coded targets for the calibration and orientation phase. Targets 

are automatically recognized, measured and labeled to solve the 

identification of the image correspondences. This solution 

becomes very useful and practical, but in many surveys targets 

cannot be used or stick at the object. 

The aim of this paper is to report an automatic approach to 

generate the 3D point cloud of a scene with an uncalibrated 

camera. After taking images with one camera and constant 

focal length, we should detect corresponding points in each two 

views. A SIFT method is used for detecting and matching 

candidate features in pairs of images. Once the correspondence 

between features in different images has been established, we 

can directly recover the 3D structure of the scene up to a 

projective transformation. It will starts with the case of two 

views, and use the result to initializes a multiple-view 

algorithm. To reach the Euclidean model of the object, a linear 

transformation H    R4×4 should be done. At the end, in order to 

refine the estimate obtained, a Euclidean bundle adjustment by 

minimizing the reprojection error is used. 
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2. THEORY 

 

2.1 Image Matching  

Features such as points and edges may change dramatically 

after image transformations, for example, after scaling and 

rotation. As a result, recent works have concentrated on 

detecting and describing image features that are invariant to 

these transformations. Scale Invariant Feature Transform 

(SIFT) is a feature-based image matching approach, which 

lessens the damaging effects of image transformations to a 

certain extent. Features extracted by SIFT are invariant to 

image scaling and rotation, and partially invariant to 

photometric changes. SIFT mainly covers 4 stages throughout 

the computation procedure as follows (D. Lowe, 2004): 

1. Local extremum detection: first, use difference-of-

Gaussian (DOG) to approximate Laplacian-of-Gaussian 

and build the image pyramid in scale space. Determine 

the keypoint candidates by local extremum detection. 

2. Strip unstable keypoints: use the Taylor expansion of 

the scale-space function to reject those points that are 

not distinctive enough or are unsatisfactorily located 

near the edge. 

3. Feature description: Local image gradients and 

orientations are computed around keypoints. A set of 

orientation, scale and location for each keypoint is used 

to represent it, which is significantly invariant to image 

transformations and luminance changes. 

4. Feature matching: compute the feature descriptors in 

the target image in advance and store all the features in 

a shape-indexing feature database. To initiate the 

matching process for the new image, repeat steps 1-3 

above and search for the most similar features in the 

database. 

SIFT has been shown to be a valuable tool in 3D 

reconstruction. In this context (3D mapping) we face with large 

baseline in image acquisition stations. Some stations are near 

the object, the others are far from it probably. There is no 

smoothness in camera stations. In addition, rotation of camera 

is not like the aerial photography. Most the time the rotation 

matrix has large components. On the other hand, keypoints 

extracted by SIFT are highly distinctive so that they are 

invariant to image transformation and partially invariant to 

illumination and camera viewpoint changes. So we prefer to use 

SIFT method for feature extraction and feature matching steps. 

Figure 1 shows efficiency of the SIFT in image matching 

process. 

2.2 The Camera Model 

The projection of a point in space with coordinates X onto the 

image plane has (homogeneous) coordinates x' that satisfy the 

equation (1). 

           [   ]                               (1) 

 

Figure 1.  Efficiency of the SIFT in image matching 

where    [   ]       and     ( ) is the pose of the 

camera in the (chosen) world reference frame. In the equation 

above, the matrix K, which is define as 

  [
       

      

   

]         ,                       (2) 

describes “intrinsic” properties of the camera, such as the 

position of the optical center (     ), the size of the pixel 

(     ), its skew factor   , and the focal length f. The matrix K 

is called the intrinsic parameter matrix, or simply calibration 

matrix, and it maps metric coordinates (units of meters) into 

image coordinates (units of pixels). In what follows, we denote 

pixel coordinates with a prime superscript   , whereas metric 

coordinates are indicated simply by  (      ). The rigid-

body motion   (   ) represents the “extrinsic” properties of 

the camera, namely, its position and orientation relative to a 

chosen world reference frame. The parameters   are therefore 

called extrinsic calibration parameters. 

2.3 The Fundamental Matrix F 

The fundamental matrix is the algebraic representation of 

epipolar geometry. The fundamental matrix maps, or 

“transfers”, a point   
  in the first view to a vector l2 F   

       

in the second view via 

  
  F   

  =   
   l2 = 0. 

In fact, the vector l2 defines implicitly a line in the image plane 

as the collection of image points {  
 } that satisfy the equation 

  
    

     

Given at least 8 correspondence, F can be estimated using the 

linear eight-point algorithm. If the number of correspondence 

was more than 8, a nonlinear algorithm should be used. Most of 

time, there are outliers in process of establishing 

correspondence and estimating F. These outliers eliminate in 

step of estimating the fundamental matrix simultaneously using 

RANSAC.  

2.4 Projective Reconstruction 

Once the correspondence between features in different images 

has been established, the 3D structure of the scene up to a 
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projective transformation could be directly recovered. In the 

absence of any additional information, this is the best one can 

do. We start with the case of two views, and use the results to 

initialize a multiple-view algorithm (Yi Ma, et al., 2003). 

2.4.1  Two View Initialization: The generic point p      

has coordinates X = [X, Y, Z]T relative to a fixed (“world”) 

coordinate frame. Given two views of the scene related by a 

rigid-body motion g = (R, T), the 3D coordinate X and image 

measurements   
  and   

  are related by the camera projection 

matrices              in the following way: 

    
              

           

   [   ]       [     ]     

where    = [       ]T is measured (in pixel) and λ is an 

unknown scalar (the “projective depth” of point). The 

calibration matrix is unknown and has the general form of 

equation (2).  

Recovering Projection Matrices and Projective Structure: 

Given the fundamental matrix F estimated via 8-point 

algorithm, there are several ways to decompose it in order 

obtain projection matrices and 3D structure from the two views. 

Since F =   ̂     , all projection matrices    [      

         
 ] yield the same fundamental matrix for any value of 

  [        ]
  and   , and hence there is a four-parameter 

family of possible choices. One common choice, known as the 

canonical decomposition, has the following form 

    [   ]    [(  ̂)
 
    ]        

       

        
  (  ̂)

 
                                    ( ) 

Now, different choices of   and    result in different projection 

matrices   , which in turn result in different projective 

coordinates Xp, and hence different reconstructions. Some of 

these reconstructions may be more “distorted” than others, in 

the sense of being farther from the “true” Euclidean 

reconstruction. In order to minimize the amount of projective 

distortion and obtain the initial reconstruction as close as 

possible to the Euclidean one, we can play with the choice of   

and   , as suggested in (Beardsley et al., 1997). In practice, it is 

common to assume that the optical center is at the center of the 

image, that the focal length is roughly known (for instance from 

previous calibrations of the camera), and that the pixels are 

square with no skew. Therefore, one can start with a rough 

approximation of the intrinsic parameter matrix K, call it  ̃. 

After doing so, we can choose       and    by requiring that 

the first block of the projection matrix be as close as possible to 

the rotation matrix between two views,     ( 
 ̂)

 
      . 

In case the actual rotation R between the views is small, we can 

start by choosing  ̃    I, and solve linearly for   and   . In case 

of general rotation, one can still solve the equation   

  ( 
 ̂)

 
       for  , provided a guess for the rotation  ̃ is 

available. When the projection matrices,   and    have chosen, 

the 3D structure can be recovered. Ideally, if guess of  ̃ was 

accurate, all points should be visible; i.e. all estimated scales 

should be positive. If this is not the case, different values for the 

focal length can be tested until the majority of points have 

positive depth. 

2.4.2    Multiple-View Reconstruction: When more than 

two views are available, they can be added one at a time or 

simultaneously. For the multiple-view setting we have 

  
 
  

 
    

                                         (4) 

The matrix            is a 3 × 4 camera projection matrix 

that relates the ith (measured) image of the point p to its 

(unknown) 3D coordinates    with respect to the world 

reference frame. The goal of this step is to recover all the 

camera poses for the m views and the 3D structure of any point 

that appears in at least two views. For convenience, we will use 

the same notation    [     ] with         and      . 

The core of the multiple-view algorithm consists of exploiting 

the following equation, derived from the multiple-view rank 

conditions: 

  [
  

 

  
]  

[
 
 
 
   

  
   

 ̂     
 ̂

  
  

   
 ̂     

 ̂

  

  
  

   
 ̂     

 ̂]
 
 
 
 

[
  

 

  
]                 (5) 

where   is the Kronecker product. Since        
 
, the 

inverse depth of   
 
 with respect to the first view, is known 

from the initialization stage from two views, the matrix 

          is of rank 11 if more than n ≥ 6 points in general 

position are given, and the unknown motion parameters lie in 

the null space of   . 

This leads to an algorithm which alternates between estimation 

of camera motion and 3D structure, exploiting multiple-view 

constraints available in all views. After the algorithm has 

converged, the camera motion is given by [     ], i=2,3, . . . 

,m, and the depth of the points (with respect to the first camera 

frame) is given by   
 
     , j=1,2, . . . ,n. The resulting 

projection matrices and the 3D structure obtained by the above 

iterative procedure can be then refined using a nonlinear 

optimization called reprojection error. 

   
 

  
∑ ∑ ‖  

 
  (   

 )‖
 
  

   
 
                      (6) 

If the reprojection error is still large, the estimates can be 

refined using a nonlinear optimization procedure that 

simultaneously updates the estimates of both motion and 

structure parameters. 

 

2.5 Upgrade From Projective To Euclidean 

Reconstruction 

 

The projective reconstruction    obtained in the absence of 

calibration information, is related to the Euclidean structure 

   by a linear transformation       , 

        
                                         (7) 

Where  indicates equality up to a scale factor,     [   ] and 

H has the form 

  [
   

      
]                                    (8) 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W3, 2013
SMPR 2013, 5 – 8 October 2013, Tehran, Iran

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 329



2.5.1     Stratification With The Absolute Quadric 

Constraint: According to the equation  

         [         ]  

where we use [     ] to denote the Euclidean motion between 

the ith and the first camera frame. Since the last column gives 

three equations, but adds three unknowns, it is useless as far as 

providing constraints on H. Therefore, we can restrict our 

attention to the leftmost 3×3 block 

 

   [
  

     
]                                      (9) 

One can then eliminate the unknown rotation matrix    by 

multiplying both sides by their transpose: 

   [
    

      
  

       
       

  
]   

      
                 (10) 

If we define   
       

       , and 

  [
    

      
  

       
       

  
]                         (11) 

then we obtain the absolute quadric constraint as bellow 

       
    

                                     (12) 

If we assume that K is constant, so that Ki = K for all i, then we 

can minimize the angle between the vectors composing the 

matrices on the left-hand side and those on the right-hand side 

with respect to the unknowns, K and  , using for instance a 

gradient descent procedure. Alternatively, it could first estimate 

Q and Ki from this equation by ignoring its internal structure; 

then, H and K can be extracted from Q, and subsequently the 

recovered structure and motion can be upgraded to Euclidean. 

Figure 2 shows the Euclidean reconstruction of a   projective 

form.   

 

Figure 2. Upgrade from projective to Euclidean reconstruction 

2.6 Euclidean Bundle Adjustment 

In order to refine the estimate obtained so far, we can set up an 

iterative optimization, known as Euclidean bundle adjustment, 

by minimizing the reprojection error as in Section 2.4.2, but 

this time with respect to all and only the unknown Euclidean 

parameters: structure, motion, and calibration. The reprojection 

error is still given by 

   
 

  
∑ ∑ ‖  

 
  (  (   

    ))‖
 
  

   
 
             (13) 

However, this time the parameters are given by 

  *          
 } , where    are the exponential coordinates 

of rotation      ̂  and are computed via Rodrigues’ formula. 

The total dimension of the parameter space is 5 + 6(m - 1) + 3n 

for m views and n points (Yi Ma, et al., 2003).  

3. IMPLEMENTATION 

At first, we created a test field to evaluate of our approach. The 

test field was created from some retro-reflective targets to 

compare our technique with the Australis software. We used 

this kind of test field because it was a simple and good way to 

test the 3D metric reconstruction. Figure 3 shows the test field 

and its 3D model.  

 
a) 

 

        
                        b) 

Figure 3.  a) The test field     b) Euclidean reconstruction of the 

test field 

To implement our approach in real word, we consider two cases 

to reconstruct: an excavation and a historical tower. In this 

study, the Canon SX230 digital camera (a non-metric digital 

camera with Manual setting to fix the focal length) has been 

used (Figure 4).  

 
Figure 4. Canon SX230 digital camera 

3.1    Case Studies 

Excavation: One of the most important applications of 3D 

mapping with uncalibrated images is volume computation. This 

is a very fast manner to compute the volume of excavation or 

embankment of soil in many projects. Since, we considered an 

excavation 3D modeling as shown in Figure 5 to evaluate our 

approach. 
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Figure 5. The excavation, its 3D point clouds and model 

Area of the excavation field was about 400m2. The 22 

consequence images have been taken to cover all the area.  

Kharraqan Towers: The need for documentation of historic 

buildings is greatly admitted by many experts in numerous 

literatures. One step in documentation is surveying or 3D 

modeling. In this regard, digital close range photogrammetry 

shows a high proficiency and it is a low-cost technique to 

collects 3D information about an object. The two Kharraqan 

Tomb Towers are located in 33km west of Ab-e Garm town, in 

Qazvin Province in Iran. These two towers are particularly 

notable for their vivid external decoration, which classes them 

amongst the finest decorated brick monuments found in Iran 

(Briseghella & Kalhor, 2007). 

We consider just two sides of west tower for modeling. The 

model of two faces of this octagon tower has been formed with 

6 images. A superficial network is designed to reach the 

minimum number of at least three cameras for each point 

(Fraser, 1989). Figure 6 shows the efficiency of this technique 

to reconstruct the historical tower.      

 

 

 

 
a) 

    

b)  

 

c) 

Figure 6. a)Photos of Tower(s)       b) Its 3D point clouds with 

an sketchy model       c) Plan of two faces 

4. RESULT AND DISCUSSION 

With the use of the test field, a comparison between our 

technique and Australis 3D modeling has been done. Table 1 

shows the differences between each direction. 

Direction X Y Z 

RMS (mm) 1.3 1.5 3 

Table 1. Accuracy assessment between our technique and 

Autralis (Z axis is in direction of first camera’s focal length)  

When experimental result examined, photogrammetric 

technique is efficient for fast 3D mapping. The first case study 

modeling has been showed about 8cm differences in a one large 

length at a huge excavation. It is so better in Kharraqan Tower 

reconstruction; the difference was about 3cm. 

This method has been shown that by generating dense point 

clouds, it is more effective than classical surveying in such 

volume calculation. In addition, image based modeling could 

approach 97.3 % ratio to the real value. On the other hand, it is 

a very low cost and fast technique. It reduces the land work 

time and usually needs one people to work, but classical land 

surveying needs at least 3 people to work. Consequently, 

photogrammetric methods have 33.33% cost advantage in field 

works when compared with the classical method (M.Yakar et 

al., 2008).  

There is an experimental relationship between distance to 

object and camera stations distance. If distance to object is 

large, it is better to have a large camera station baseline. It 

forms a strong network. It is very important to peruse the object 

before imaging. If the object or area is large, we have to take 
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more images and it increases the computational process (in the 

case of partial imaging). Moreover, it leads to block error in 

bundle block adjustment if the images don’t have an adequate 

overlap (more than 60%). This is very important to select an 

appropriate digital camera proportional to the project. If the 

object is big or distance to object is large, it should be to use a 

camera with high resolution. It is suggested that for 3D 

reconstruction projects it is better to use SLR digital cameras.      

5. CONCLUSION 

By the development of off-the-shelf digital cameras and 

modern image processing techniques, digital close range 

photogrammetry is vastly utilized in many fields such as 

engineering structure measurements, topographic and 

archeological surveying, etc. Both cheap and fast features lead 

to vast use of this method. 

In this research, we consider an approach to reach a three-

dimensional Euclidean model of an object or a scene by means 

of an automatic manner. By the help of perspective projection, 

it is possible to goes from 2D images to 3D features. Problem 

of estimating the locations of 3D points from multiple images 

commonly known as structure from motion (SfM). We used an 

efficient SIFT method to solve the correspondence problem, 

which it is a basic step in SfM. After that to reach the metric 

reconstruction, we passed the projective transformation. At the 

end a nonlinear bundle adjustment was applied to refine the 

estimated obtained.  

To implement the mentioned technique, we started with a test 

field to evaluate our technique. This kind of test field has been 

used to compare our approach with Australis software. The 

result show acceptable differences and confirm our approach 

for 3D metric modeling. Then for testing above, we consider an 

excavation and a historical tower to reconstruct. The excavation 

case was elected because of widely usage of this approach in 

such fields, and to show the performance of this method to 

documentation of historical places, the Kharraqan Tomb 

Towers was selected. To cover the two cases, respectively, 22 

and 6 images have been taken for excavation and historical 

tower. 
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