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ABSTRACT: 

 

Remote sensing technology has proved a magnificent role in urban development. High resolution remotely sensed imagery provides 

remote sensing mapping, GIS data acquisition and automatic updates, and also supports for extraction train features such as building. 

In this work, a new approach for building extraction in colored high resolution remotely sensed imagery is proposed. The approach 

includes Statistical Region Merging (SRM) segmentation, boundary tracing and clustering based on new shape-factors. After 

performing SRM, the boundary tracing algorithm is carried out. Moore neighbour contour tracing algorithm is used for this purpose. 

New shape factors are proposed based on geometry of buildings and other terrain features. The correlation of shape factors between 

buildings and road features is significantly low. The shape factors are based on circularity, elongation and compactness. Afterwards 

K-means classifier is utilized in order to discriminate between buildings and other objects. In this step squared Euclidean distance 

has been opted. Two clusters have been set for separating buildings from roads and complex features. In order to evaluate the 

capability of this method, two images of Worldview2 sensor has been used. The fine result demonstrates the proficiency of shape 

factors and remarkable and satisfactory performance of the new prompt. 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

Detecting buildings in aerial and satellite images (A. Katartzis 

and H. Sahli, 2008) (F. Lafarge et al., 2009) (B. Sirmacek and 

C. Unsalan, 2008) is a key issue in several remote sensing 

applications, among others in cartography, GIS data 

management and updating, disaster recovery or illegal built-up 

region detection. In lack of stereo based height information (F. 

Lafarge et al., 2009), building identification becomes a hard 

monocular object recognition task. 

Building extraction tasks may differ depending on the use of 

geometrical representation with rectangular models (Weidner 

and Frostner, 1995), use of multiple images (Ballard and 

Zisserman, 2000), and polyhedral shapes (Scholtze et al., 2002), 

the use of lines, points and regions to describe building outlines 

(Fisher et al., 1997).  The existing automated building 

extraction techniques are still performing at elementary level 

caused by image variation in terms of type, scale, and required 

level of detail (Wang and Tseng, 2003). Numerous methods in 

the bibliography address building extraction at a single time. It 

is common to use multiview inputs (S. Noronha and R. Nevatia, 

2001), (F. Bignone et al., 1998) to exploit 3-D information in 

building modeling. Detection in densely populated areas can be 

efficient by working on stereo- or lidar-based Digital 

Elevation/Surface Models (DEM/DSM), where the silhouettes 

of the building footprints can be separated from the ground 

planes by the estimated height data (M. Ortner et al., 2008), (N. 

Champion, 2008), (K. Karantzalos and N.  

 

 

Paragios, 2010). Other benefits are provided by multiple sensor 

inputs such as fusion of aerial images with color infrared (CIR) 

(F. Rottensteiner et al., 2007), or laser data (J. Jaw and C. 

Cheng, 2010). 

The aim of this paper is to improve the traditional building 

extraction methods in high resolution images based on 

segmentation, boundary tracing algorithm and clustering 

effective shape-factors. Afterwards tracing boundary have 

carried on regions by Moore algorithm then tiny objects have 

been eliminated by adaptive thresholding before clustering and 

holes have been filled by flood-fill method; finally, the relevant 

shape-factors are introduced where the correlation between 

roads and complex buildings is significantly decreased. 

 

2. METHODOLOGY AND USED DATA 

Studies mainly focused on edge detection method and 

characteristics of edges; however we emphasize on extraction 

and clustering of regions that are more discernable in high 

resolution RS images. 

 

2.1. Pre-processing 

Image enhancement is among the simplest and most appealing 

areas of digital image processing. Basically, the idea behind 

enhancement techniques is to bring out detail that is obscured, 

or simply to highlight certain features of interest in an image. In 

first step, we applied histogram equalization on RGB images. 

This procedure can done by transforming RGB to HSV color 

and then, exerting histogram equalization merely on V 

parameter. Afterwards, the enhanced HSV can be transformed 
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back to RGB domain. This step has been done in order to make 

visions of building objects differ from background. 

2.2. Statistical Region Merging 

In this paper we use statistical region merging technique for 

image segmentation proposed by (Nock, R. and Nielsen, 2004)]. 

Statistical region merging is a linear-time fast and simple region 

growing segmentation algorithm based on an adaptive statistical 

threshold merging predicate on color channels that does not 

require maintaining dynamically the region adjacency graph.   

Let I be the input color image with  l pixels, each containing 

the Red, Green and Blue values, each of the three belonging to 

the set {1, 2, 3,…g}. Let l* denote the perfect scene (theoretical 

image) of I. In I*, the true or statistical regions represent 

theoretical objects sharing a common homogeneity property: 

Inside any statistical region and given any color 

channel   { , , }R G B the statistical pixels have the same 

expectation for this color channel. The expectations of adjacent 

statistical regions are different for at least one color 

channel { , , }R G B . The image I is obtained from I* by sampling 

each statistical pixel for observed RGB values. In each pixel of 

I*, each color channel is replaced by a set of exactly Q 

independent random variables, taking positive values on 

domains bounded by g/Q, such that any possible sum of 

outcomes of these Q random variables belongs to {1, 2, 3,…g}. 

The parameter Q allows to quantify the statistical complexity of 

I*, the generality of the model and the statistical hardness of the 

task. The segmentation scheme is basically depends on merging 

predicate and an order to test region merging.  The merging 

predicate for the RGB setting is given by: 

 

     ' '    , , ,  ( )',

                                                               

true if a R G B R R b R b R
a aP R R

false otherwise
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where, aR enotes to observed average for color channel a in the 

region R and b(R) is given by: 
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where 0 1   and ( 1)
g

R R
R
  n 4-connexity there are N<2|I| 

couples of adjacent pixels. Let SI be the set of these couples and 

f(p,p’) be the real valued function, with  p and  p’ pixels of I 

defined by: 

' '( , ) max| |f p p p p
a a

     (3) 

First we sort the couples of SI in increasing order of f(p,p’)  and 

then traverse this  order only once. For any current couple of 

pixels  ’,f p p S
I

  for which 
'( ) ( )R p R p  (where R(p) is the 

current region to which p belongs), test '( ( ), ( ))P R p R p , and 

merge  R(p) and  R(p’) if and only if it returns true.   

 

2.3. Tracing regions boundaries 

Before taking any further action, we have to trace boundaries. 

Moore neighbour contour tracing algorithm is used for this 

purpose. Moore Neighbourhood of a pixel is the set of 8 pixels 

which share a vertex or an edge with that pixel. The basic idea 

is: When the current pixel p is white, the Moore neighbourhood 

of p is examined in clockwise direction starting with the pixel 

from which p was entered and advancing pixel by pixel until a 

new white pixel is encountered. The algorithm terminates when 

the start pixel is visited for second time. The main weakness of 

Moore Neighbour tracing lies in the choice of stopping criteria 

i.e. visiting the start pixel for second time. If the algorithm 

depends on this criterion all the time it fails to trace contour of 

large family of patterns. So mostly it uses Jacob’s stopping 

criterion. 

2.4. Clustering based on shape-factor 

Until this step, we retrieved many regions that merely few of 

them belong to buildings. To extract the buildings regions we 

shall define features that exclusively discriminate between 

buildings regions and others. The less correlation become 

between features of buildings and other terrain objects, the more 

precise the clustering will be; therefore buildings will readily be 

separated. 

Figure 1 represents some sample shapes to introduce shape-

factors more comprehensively. 

 

 
Figure 1. Sample shapes 

They are four shape-factors proposed in this research: 

R factor: The first feature based on circularity is R. we 

calculated a shape centroid, and measured all the Euclidean 

distances from the centroid to each boundary pixel. With this 

set of distances, the media (μ) and the variance (σ2) were 

calculated. These statistical parameters are used on a ratio that 

calculates the circularity, R, of a shape. This circularity measure 

is given by: 
2

R



     (4) 

The feature is evaluated for the shapes presented in table1: 

 
Region # 1 2 3 4 5 6 7 

R factor 58.41 1.99 0.2 0.1 4.9 6.35 0 

Table1. R values for samples 

H factor: This shape feature is defined in such a way as to 

obtain a quantitative compactness value of a shape. The shape 

factor H uses the well-known discrete distance transform. To 

calculate the shape factor, H, a ratio is defined between the 

addition of distances and the cube of farthest distance from 

border. This factor is given by: 

1

3

1 2[max( , , , )]

N

ii

N

x
H

x x x




              (5) 

where xi is the value generated by the discrete distance 

transform, and N is the number of region pixels. H feature is 

evaluated for the shapes presented in table2: 

 

 
Region # 1 2 3 4 5 6 7 

H factor 24.44 2.04 1.08 1.19 2.3 3.78 1.06 

Table2. H values for samples 
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Q-factor: Q shape factor is another compactness value of a 

shape. This factor is defined by a ratio between the area of 

region and the square of maximum farthest distance from 

border. 

Then Q factor is defined by: 

2

1 2[max( , , , )]N

A
H

x x x



              (6) 

where xi is the value generated by the discrete distance 

transform, N is the number of region pixels and A is area of 

corresponding region. 

Q feature is evaluated for the shapes presented in table3: 

 
Region# 1 2 3 4 5 6 7 

Q factor 58.31 5.34 3.48 3.

5 

8.

8 

11.8 3.1 

Table3. Q values for samples 
 

C-factor: The last feature is the old ratio of shape compactness 

which is formulated by: 
2

4

P
C

A
                  (7) 

where A is the shape area and P is the shape perimeter. C 

feature is evaluated for the shapes presented in table4: 

 
Region # 1 2 3 4 5 6 7 

C factor 8.74 1.28 2.47 1.

2 

6.

5 

3.78 1.0 

Table4. C values for samples 
 

2.5. K-means clustering 

In this important step we shall use of an unsupervised clustering 

method in order to classify the regions into building and other 

regions based on mentioned shape-factors. We make use of K-

means clustering in order to achieve this goal. K-means uses an 

iterative algorithm that minimizes the sum of distances from 

each object to its cluster centroid, over all clusters. This 

algorithm moves objects between clusters until the sum cannot 

be decreased further. The result is a set of clusters that are as 

compact and well-separated as possible. K-means computes 

centroid clusters differently for the different supported distance 

measures. In this step squared Euclidean distance has been 

opted. Two clusters have been set for separating buildings from 

other terrain features. Like many other types of numerical 

minimizations, the solution that k-means reaches often depends 

on the starting points. It is possible for k-means to reach a local 

minimum, where reassigning any one point to a new cluster 

would increase the total sum of point-to-centroid distances, we 

set 10 times to repeat the clustering, each with a new set of 

initial cluster centroid positions and them it returns the solution 

with the lowest value for sum of distances. 

2.6. Used data 

In order to evaluate the capability of this method, RGB images 

of Worldview2 sensor has been tested. WorldView-2 provides 

46 cm resolution images in panchromatic mode and 1.84m for 

other eight bands.  

 

3. EXPERIMENT 

Two images have been exploited in order to evaluate the 

capability of the approach. Figure1 and 2 show example 

detection results. It can be seen that many buildings have been 

detected. 

By using K-means for clustering regions into buildings and 

others, the result showed that shape-factors could even 

discriminate complex or elongated road features from the 

buildings. However, some building boundaries were not 

delineated correctly. When the overall detections were 

considered, the following source of error was identified. Most 

of the error was caused by the over-merging of regions in 

different building appearances. Accordingly the SRM method 

should be optimized in order to have better result in field of 

building extraction. 

 

 
Figure 2. The resultant building detection in a WorldView2 

image. 

 
Figure 3. The resultant building detection in a WorldView2 

image. 

 

4. CONCLUSION 

This study has proposed a method of building extraction on 

high resolution image. We have focused on introducing and 

creating new shape factors that are the most important factors in 

detection of buildings. The fine result demonstrates the 

proficiency of shape factors and the method. As for future work, 

we will develop this methodology for urban areas by adding 

more features (e.g. DEM, texture) in order to extract buildings 

as well as roads. The merging predicate in SRM should also be 

optimized for remote sensing imageries in order to overcome 

with over-merging phenomenon. 
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