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ABSTRACT: 

 

The main idea of this paper is to integrate the non-contextual support vector machines (SVM) classifiers with Markov random fields 

(MRF) approach to develop a contextual framework for monitoring of agricultural land cover. To this end, the SVM and MRF 

approaches were integrated to exploit both spectral and spatial contextual information in the image for more accurate classification 

of remote sensing data from an agricultural region in Biddinghuizen, the Netherlands. Comparative analysis of this study clearly 

demonstrated that the proposed contextual method based on SVM-MRF models generates a higher average accuracy, overall 

accuracy and Kappa coefficient compared with non-contextual SVM method. Since the spatial information is considered in the 

proposed method, this study indicates that a neater, more homogonous and speckle-free results could be generated by the SVM-MRF 

approach. 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

Many researches have been conducted to find a suitable method 

to classify the remote sensing data. The conventional pixel-

based classification methods consider a pixel in isolation during 

an image processing approach, and do not utilize the contextual 

information within and between objects as an important source 

of knowledge for image classification.  

The increasing dissatisfactions with classical pixel-based 

approach in the field of remote sensing have raised the new 

critiques on the necessity of changing of the conventional pixel 

based image processing method to more realistic modelling 

method for more accurate description of the real world in the 

late 1970s.  

This fundamental paradigm in modelling of the existed relations 

or correlations within and between objects in real world can be 

observed in the early works of the researchers like Swain, et al. 

(1980; Swain, Stegel, & Smith, 1979), Gurney (1981), Swain, et 

al.  (1981), Wharton (1982), Kittler and Föglein (1984), Di 

Zenzo, et al. (1987),  Klein and James Press (1989) and Fung, 

et al. (1990). These researchers have discussed the 

shortcomings of the unsophisticated conventional image 

processing approaches as they neglect the valuable information 

that may be derived by considering the pixels by context. 

Contextual image classification is an approach of classification 

based on contextual information which can be derived from the 

adjacent pixels that can be exploited in the images. In this 

framework, spatial contextual information can be expressed as 

the probability of presence of one object with respect to the 

presence of the neighbouring objects (Tso & Olsen, 2005). 

In fact, the land cover types have been usually expanded on a 

large area compared with the pixel size of the adapted satellite 

remotely sensed image, so the associated land cover of any pixel 

in the image, i.e., the pixel label may dependent of the label of 

its neighbouring pixels. Furthermore, in practice, the satellite 

imagery sensors normally acquire particular portions of energy 

from neighboring pixels. To formulate these existing spatial 

relationships, the contextual image processing approach was 

proposed to consider the relation or correlation between 

neighboring pixels (Khedama & Belhadj-Aissaa, 2004; Solberg, 

Taxt, & Jain, 1996; Swain, et al., 1979). The contextual 

approach aims to improve the accuracy of results and efficiency 

of complex feature recognition and classification problems by 

consideration and modelling of the contextual knowledge on the 

incorporating regions in the real world (Ardila Lopez (2012); 

Blaschke, et al. (2010); Burnett & Blaschke (2003)).  

In this paper the non-contextual support vector machines 

(SVM) classifiers was integrated with Markov random fields 

(MRF) model in a unique formulation to develop a spatial 

contextual classification approach for more accurate monitoring 

of agricultural land cover. 

In the following sections, the generality of SVM and MRF 

methods will be discussed and the proposed model for the 

integration of these models will be introduced. Finally, the end 

of this paper is reserved for the evaluation of the results of 

proposed method and also the final comments and discussion. 

 

2. METHODOLOGY 

2.1 SVM Classification of Remotely Sensed Data 

SVM is a robust supervised kernel-based non-contextual image 

classification method which derived from statistical learning 

theory. SVM classification approach can produce a 

sophisticated classification results in the complex and noisy 

images by minimizing the so-called structural risk, or 

classification errors, during solving of the classification 

problem (Chang & Lin, 2005; Tso & Olsen, 2005). 

Unlike conventional statistical maximum likelihood methods, 

there is no assumption about class distribution in the SVM 

classification method. This characteristic makes the SVM 
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approach to show a substantial improvement over traditional 

methods(Tso & Olsen, 2005). 

 In the following the concepts and fundamentals of this 

classifier will be reviewed for the binary classification 

problems. 

Suppose that there are two linearly non-separable classes of 

21,  in an image (i.e., },{ 21 L ). The training data set 

is denoted by pairs ),( ii yx , i = n,...,1 , iy = }1,1{  , ix R d , 

Lyi   where ix  are the observed multispectral feature vectors 

and 
iy  is the label of the information class for training 

sample i . The SVM classifier establishes an optimal hyperplane 

that discriminate two classes in such a way that the distance 

(margin) from the hyperplane to the nearest training data points 

in each of the classes is as large as possible (Mather & Tso, 

2010). The hyperplane can be formulated as the following 

discriminant function: 

 

 

0 bxwT                               (1) 

   

 

where x is a point lying on the hyperplane, w denotes a normal 

to the hyperplane and the parameter is the bias. 

It is obvious that all the training data should satisfy the 

following constraint: 

 

 

i
T
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Where
i denotes slack variables, which are proportional to 

some measure of cost, are introduced to relax the constraints 

(Cortes & Vapnik, 1995; Tso & Olsen, 2005; Vapnik, 1998). 

The optimal problem then leads to: 
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where C is a penalty parameter which can control the 

misclassification of training samples. 

In the case where a linear hyperplane is unable to separate the 

information classes sophisticatedly, the nonlinear SVMs then 

can be adapted. To this end, this approach maps the training 

data set into a higher dimensional space called Hilbert space 

(ℋ) by a nonlinear vector mapping function called  dR:  

ℋ and performs manipulation within this mapped feature space 

to improve the discrimination between classes(Tso & Olsen, 

2005; Vapnik, 1998).  

It can be proven that the SVM-based decision rule shown in 

Equation (1) can be equivalently expressed as following 

equation in a higher dimensional space ℋ: 
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where nsv denotes the number of support vectors. For more 

details see (Mather & Tso, 2010). 

The computational loading of ( )().( ixx  ) can be quite costly 

in a higher dimensional space, so a positive definite kernel 

function which represented as K(x,y), where K(x,y)= 

)().( yx   was proposed to reduce the computational burden 

(Tso & Olsen, 2005; Vapnik, 2000). 

Therefore the decision rule expressed in Equation (4) can be 

generalized into: 
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In practice, the role of a kernel function can be expressed that as 

mapping the training data into a higher dimensional space in 

order to increase the quality of discrimination of the training 

samples (Moser & Serpico, 2013; Tso & Olsen, 2005). For 

more details on different types of kernel function and their 

characteristics and methods for developing SVMs for multiclass 

classifications see (Mather & Tso, 2010). 

 

2.2 MRF Modelling in Remotely Sensed Data Classification 

MRFs are stochastic models that formulate the spatial context in 

Bayesian image analysis approaches by means of the 

minimization of suitable energy functions (Dubes & Jain, 

1989). This method has been found as a very efficient tool for 

characterizing contextual information. In following, the concept 

and the fundamentals of MRF will be briefly reviewed. 

All image analysis problems could be formulated as the 

labelling problem, that is, to assign suitable labels from a label 

(class) set  }...,,{ ,21 nL  to all elements of the set of sites 

(pixels) S ={1, 2, …, m}. The concept of Markov random fields 

(MRF) is widely used, when the contextual information is also 

taken into account in the computer vision problems. In these 

problems the main principle is that the label of a site depends 

on the labels of its neighbourhood.  

A neighbourhood system for S  is a set of subsets that define 

neighbours of sites. Formally it is defined as }:{ SiNN i  , 

where iN  is the set of neighbours of site i. Let 

}...,,{ ,21 mFFFF   be a family of random variables on S where 

each iF  takes a value Lfi  , where }...,,{ ,21 mffff   is a 

configuration of F corresponding to a realization of the field. 

For simplicity, the probability that random variable Fi  takes 

the value fi is denoted by )( ii fFP  , abbreviated )( ifP and 

the joint probability ),...,()( 11 mm fFfFPfFP  is 

denoted by )( fP from now on.  Now F  is said to be MRF on 

S with respect to a neighborhood system N if and only if the 

following two conditions are satisfied: 

 

 

)( fP > 0, Ff                                             (6) 

 

 

)|()|( }{ Niiisi ffPffP                                                     (7) 

 

  

The second property presents a local characteristic of F as an 

extension of Markovianity in Markov processes.  
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Image analysis problem with contextual information could be 

reduced to find a suitable configuration of F  (i.e. f ) with 

maximum a posteriori (MAP) when an observed data is 

available. Joint probability could be computed using the 

equivalence between MRF and the so called Gibbs random field 

(GRF) (For more details see (Li, 2009)). GRF is a set of random 

variables with Gibbs distribution which takes the following 

form: 
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Where Z is a normalizing factor, T is the temperature and 

)( fU  is the energy function. The energy function is defined as: 
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where summation is over the set of all possible cliques, C . 

Note that a clique is a simple subset of sites.  )( fVc is called 

clique potential and depends on the local configuration on the 

clique c . 

Given labelling if and observed multispectral feature vector ix  

( ix R d ),  the posterior probability is: 
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where )( ifP  is the prior probability, )|( ii fxP  is the 

conditional p.d.f of the observation ix  (i.e. likelihood function) 

and )( ixP  is a constant, independent from labelling if  called 

the density of ix . Thus: 

 

 

)()|()|( iiiii fPfxPxfP                                                     (12) 

 

 

Assume that the label field f is a MRF, then )|( ii fxP  is also 

a MRF (For more details see (Geman & Geman, 1984)). 

The equivalence of MRF and GRF implies that: 

 

 

)()|()|( iiiii fUfxUxfU                                                 (13) 

 

 

where )|( ii xfU is the posterior energy for a pixel, 

)|( ii fxU denotes conditional energy and )( ifU  (also can be 

denoted as )|( Nii ffU ) is the prior energy function for  

neighbourhood system.  

The posterior energy for entire image is defined as: 
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2.3 SVM-MRF-based Proposed Method for Classification 

of Remotely Sensed Data 

This research adopted Radial Basis Function (RBF) as a kernel 

function for SVM method as it has been shown its ability in the 

classification of remotely sensed images. 

To integrate contextual information based on MRF model to 

non-contextual SVM, the posterior energy is derived based on 

Equation (13). 

According to Equation (4), SVM method assigns class labels to 

pixels based on decision function )(xf . To apply SVM model 

as conditional probability function (likelihood function) 

)|( ii fxP  for deriving the respective conditional energy, it is 

required to produce class probabilities instead of class labels. 

This is done by implementation of Plott’s posteriori 

probabilities theory for SVM. For more details see (Lin, Lin, & 

Weng, 2007). 

To control the contribution of prior and conditional energy 

function in Equation (13), an additional parameter λ is defined: 

 

 

)()|()1()|( iiiii fUfxUxfU                                      (15) 

 

 

Where 10   . In the case that λ=0, the prior model 

(contextual information) is completely ignored. Contrary to this 

case, if λ=1, only the prior model is considered and non-

contextual information is ignored. Since this study is 

concentrated on the integration of contextual characteristic to 

non-contextual SVM classifier based on MRF model, the value 

of λ should be defined in the range of 10   . 

According to Equation (8), to maximize )( fP value, the energy 

function has to be minimized. Thus the problem of finding of 

optimal labelling is turn into energy function minimization 

problem. 

The problem of finding optimal labelling is difficult if the 

energy function is not convex. Simulated annealing (S.A) is one 

of the stochastic-based global optimization methods which is 

widely used in the image analysis context. According to the 

abilities of this optimization technique in context of 

optimization in the field of image analysis, this method was 

adopted in this research. S.A tries to minimize the energy 

function iteratively. In the k th iteration of S.A a new solution, 
1ks 
 , is generated from the previous iteration, 

ks . Let 
1( ) ( )k kE E s E s     be the difference between the energy 

of solutions of these two consecutive iterations. If 0E   

then 
1ks 
 is accepted as the new solution, since it improves the 

objective function, otherwise, 
1ks 
 is accepted with 

probability  exp / kE T , where 
kT   is the temperature at 

iteration k . Next, the current temperature is updated 

(decreased) and the process continues until some stopping 

criterion is hold, e.g. after 3 successive “temperature stages” 

with no acceptance. A “temperature stage” occurs when 12n  
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perturbations are accepted or 100n  perturbations are 

attempted, where n   is the number of variables.  

The temperature updating rule plays critical role in the 

convergence of the method to global optimum. A traditional 

choice is to use geometric formulation, that is, 
1k kT T  , 

where    is a constant. Another updating rule, known as 

"adaptive" annealing, may provide better solutions, so it was 

adopted in this research.  It is defined as 
1k k kT D T    

where: 

 

0min , k

k

k

E
D D

E

  
  

  

                                                      (16) 

 

with 
0D  =0.5 to 0.9, 

kE : the minimal accepted energy during 

the iteration k and 
kE : the average energy accepted during 

the iteration k . Note that at high temperature since 

/k kE E  is small then temperature is lowered quickly. For 

more details see (Li, 2009) and (Pétrowski & Taillard, 2006).  

The proposed model was implemented in R programming 

language. 

 

2.4 Study Area 

 The area of interest for this study is located in Biddinghuizen 

village in the province of Flevoland of the Netherlands 

(52°27′N   5°42′E). This area represents a typical modern 

agricultural region in the Netherlands. The agricultural fields in 

this study area are large and usually rectangular. The main crops 

of the study area are grass, potato, wheat, sugar-beet, bean, pea 

and onion. The elevation differences in the Biddinghuizen 

region are very small (Abkar, 1999).  

 

2.5 Data 

The image data that was used in this study is a Landsat 

Thematic Mapper (TM) image that was acquired on 7 July 1987 

(Figure 1). 

This data was selected as it was used extensively in the previous 

studies in the context of agricultural land cover classification by 

the different researchers like Janssen and Middelkoop (1992), 

Janssen and Molenaar (1995), Fatemi and Abkar (2003),  

Lesparre and Gorte (2006) and Vahidi (2010). Therefore, this 

characteristic could provide a good chance for further 

evaluation and comparison of the different proposed approaches 

for the agricultural land cover classification. 

 

 
 

Figure 1. Landsat Thematic Mapper (TM) image (bands 3, 4, 5), 

Biddinghuizen, the Netherlands  

 

The image was georeferenced to the Dutch national 

triangulation system using a first-degree affine transformation. 

The pixels were resampled to the original size of 30 m by 30 m. 

The spectral bands 3, 4, and 5 of TM image were used in this 

research. Also the GIS-ready reference land cover map of the 

study area for 1987 crop year was used in the stages of training 

sample collection and validation of the results of this research 

(Figure 2). 

 

 
 

Figure 2. Land cover map of study area 

 

3. RESULTS AND DISCUSSION  

Figure 3 shows the classified image based on SVM method 

where C=10 and σ=1. Accuracy assessment clearly shows the 

potential of SVM method for classification of the major classes 

in the image (Table1). 

 

 
 

Figure 3. Classified image generated by SVM, where C=10 and 

σ=1 

 

 

 
 

Table 1. Accuracy assessment of SVM method 

 

In the proposed model, the SVM-based classified image was 

adopted as a suitable configuration of F by the MRF model. 

According to the contextual origin of the proposed SVM-MRF-

based approach, this method is very effective against noisy 

small and limited regions. These regions are labelled based on 

the likelihood function and prior probability according to their 

neighbourhood existed state. However, beside the advantages of 

this approach in handling of this type of classification errors, 

there is a drawback to this method. In some realistic cases in the 

real world, it can be observed that a small dissimilar region 

(class) has been surrounded by a homogeneous area (class). So, 
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this configuration of the information classes may increase the 

chance of misclassification of the small regions, as the 

contextual filter may consider these correctly classified pixels as 

the noisy pixels, depending on the size of the region and the 

temperature state. Therefore, the classified image configuration 

with the minimized total posterior energy is not necessarily has 

the best classification result. To find the optimized solution 

among the S.A algorithm results which were generated at the 

consecutive iterations of this optimization approach, the 

averaged accuracy (A.A), overall accuracy (O.A) and kappa 

coefficient (k) criteria were also be considered in this study 

beside the total energy of the generated configurations. 

Figure 4 demonstrates the temperature state and total energy 

state of an image according to consecutive iterations of S.A 

method. The implemented model was stopped by the controlling 

criterion of the adaptive S.A algorithm after 37 consecutive 

iterations. However, although the optimized configuration of 

classified image from the total energy content aspect was 

generated at iteration 37, but according to Figure 5 it can be 

observed that the best O.A, AA, and k of the classification 

practice occurred in the iteration 26. Therefore, the 

classification product of this iteration of S.A algorithm was 

adopted as the result of SVM-MRF classification method. 

 The classified image based on SVM-MRF method is illustrated 

in Figure 6, where C=10, σ=1, λ=0.95 and T=0.02. Table 2 

shows the results of accuracy assessment for the classified 

image based on SVM-MRF method. 

 

 
Figure 4. Temperature and total energy state of an image 

according to iterations of S.A method 

 

 

 
 

Figure 5. Overall accuracy (O.A), average accuracy (A.A) and 

kappa coefficient (K) for SVM method and SVM-MRF method 

according to iterations of S.A method 

 

 

 

 
 

Figure 6. Classified image generated by SVM-MRF, where 

C=10, σ=1, λ=0.95 and T=0.02 

 

 
 

Table 2. Accuracy assessment of SVM-MRF method 

 

The proposed contextual method provides 1.3% increase in 

average accuracy, 0.8% in overall accuracy and 1% in Kappa 

coefficient compared to a non-contextual SVM (Table 3). 

However, as Table 3 was illustrated, this approach was 

considerably increased the producer’s accuracy in the case of 

grass and sugar-beet classification while it was slightly 

decreased the producer’s classification accuracy of wheat and 

onion crops as a result of the misclassification of the correctly  

classified small regions. 

 

 
 

Table 3. Accuracy comparison for SVM and SVM-MRF 

methods 

 

A visual comparison of the classified images (Figure 3 and 

Figure 6) shows that the SVM-MRF model was produced a 

neater and speckle-free classification results and improved 

spatial regularity in the generated map compared to the SVM 

approach.Conclusions 

Results of this study showed the distinctive abilities and 

advantages of contextual methods based on the integration of 

SVM and MRF methods over non-contextual SVM method.  

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W3, 2013
SMPR 2013, 5 – 8 October 2013, Tehran, Iran

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 445



 

 Comparative analysis clearly demonstrated that substantially 

higher average accuracy, overall accuracy and Kappa coefficient 

could be gained by incorporating the spatial contextual 

information by SVM-MRF-based proposed method compared 

with SVM method. Since the spatial information is considered 

in the proposed method, the study indicates a neater, more 

homogonous and speckle-free results could be generated by the 

SVM-MRF approach. 
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