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ABSTRACT:

The utility of the horizon for airborne sense-and-avoid (ABSAA) applications is explored in this work. The horizon is a feature
boundary across which an airborne scene can be separated into surface and sky and serves as a salient, heading-independent feature that
may be mapped into an electro-optical sensor. The virtual horizon as established in this paper represents the horizon that would be seen
assuming a featureless earth model and infinite visibility and is distinct from the apparent horizon in an imaging sensor or the pilot’s
eye. For level flight, non-maneuvering collision course trajectories, it is expected that targets of interest will appear in close proximity
to this virtual horizon. This paper presents a model for establishing the virtual horizon and its projection into a camera reference plane
as part of the sensing element in an ABSAA system. Evaluation of the model was performed on a benchmark dataset of airborne
collision geometries flown at the National Research Council (NRC) using the Cerberus camera array. The model was compared against
ground truth flight test data collected using high accuracy inertial navigation systems aboard aircraft on several ’near-miss’ intercepts.
The paper establishes the concept of ’virtual horizon proximity’ (VHP), the minimum distance from a detected target and the virtual
horizon, and investigates the utility of using this metric as a means of rejecting false positive detections, and increasing range at first
detection through the use of a region of interest (ROI) mask centred on the virtual horizon. The use of this horizon-centred ROI was
shown to increase the range at first detection by an average factor of two, and was shown to reduce false positives for six popular feature
detector algorithms applied across the suite of flight test imagery.

1. INTRODUCTION

The global market for small unmanned aircraft systems (UAS)
is expected to grow significantly over the next decade [Mendel-
son, 2014]. Building inspections, pipeline monitoring and aerial
photography/videography production are among the success sto-
ries for commercial applications utilizing UAS, as they can be
performed within visual line of sight of the pilot. It is more diffi-
cult to gain approval of flight operations beyond the visual line of
sight (BVLOS), owing to the regulatory requirement to see and
avoid conflicting air traffic. This requirement either restricts BV-
LOS operations to segregated, or unpopular airspace (e.g. low
level over the ocean, or arctic), or necessitates the use of a sense
and avoid (SAA) system with an equivalent level of safety to the
manned aircraft see and avoid principle. Regulatory bodies have
yet to establish a consensus on the required performance stan-
dard for a sense and avoid system, however several groups are
currently working on solutions to this issue, with the most re-
cent developments revolving around a specified target level of
safety that is comparable to that of the current mid-air collision
rate for manned aircraft. Despite the lack of performance stan-
dards, the SAA problem has been the subject of a vast amount of
academic, commercial and regulatory activity and still remains
an open problem for operations in civil airspace.

2. BACKGROUND

An airborne SAA (ABSAA) system based on electro-optical (EO)
or infrared (IR) cameras must transform a sequence of images
into an accurate and reliable estimate of collision-course targets.
The standard approach to the problem is a detection and tracking
pipeline consisting of the extraction of ’good’ features, followed
by tracking of those features across the image sequence, and fi-
nally, applying target discrimination criteria to remove false pos-
itives.
∗Correspondence author

2.1 Electro-Optical SAA Techniques

Vision-based approaches to solve SAA, utilizing a variety of im-
age processing and machine learning techniques, are extensively
explored in literature. Detection and extraction of actual air-
borne collision-course targets has been presented in [Fasano et
al., 2008,Dey et al., 2009,Dey et al., 2011,Lai et al., 2013,Salazar
et al., 2013, Fasano et al., 2014]. The authors in [Dey et al.,
2009,Dey et al., 2011] present a novel approach for aircraft detec-
tion incorporating a processing pipeline utilizing trained classi-
fiers. The approach was tested against airborne targets using mul-
tiple sensor and lens configurations with relative success. How-
ever the system was affixed to the ground and observed a fixed
portion of the sky. As such, it was completely absent of ground
clutter and platform vibration. Further testing is needed to en-
sure that it will extend to the ABSAA paradigm. A similar clas-
sification approach was employed in [Carnie et al., 2006]. The
authors in [Fasano et al., 2008, Fasano et al., 2014] conducted
airborne collision trials with fused sensor methodologies (EO/IR,
EO/Radar) and tested target detection and tracking algorithms in
real-time with encouraging results. The work in [Salazar et al.,
2013] describes an ABSAA system fusing EO, IR, millimeter-
wave radar and laser radar sensing modalities as well as avoid-
ance algorithms utilizing a minimum-distance bubble. The algo-
rithms were tested in a simulation environment and noise models
were introduced to approximate sensor data in a more realistic
fashion. The work in [Lai et al., 2013] presents airborne flight
tests with an EO-only system. The authors present an image pro-
cessing pipeline utilizing a morphology-based feature detector.
The use of morphology for target detection was tested by the Na-
tional Research Council (NRC) against the NRC dataset, but was
found to be prone to false detections, especially in the presence
of ground clutter. Use of a weighted ROI mask such as the one
described in this paper to localize the target should dramatically
improve performance. The authors in [Forlenza et al., 2012] de-
scribed an air-to-ground target detection approach implemented
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Figure 1: Side and birds-eye views of the theoretical horizon on
the Earth’s surface.

in hardware on an unmanned helicopter. They compared the per-
formance of Harris and Shi-Tomasi feature detectors against syn-
thetic targets. Here, we present the results of those corner de-
tectors, among others, against real targets acquired from airborne
near-collision flights.

3. MODEL

This section describes the theoretical horizon model and its pro-
jection, defined as the “virtual horizon” into an electro-optical
sense calibrated with respect to the platform INS. The accuracy
of the projection is a function of the fidelity of the model, and the
precision of the calibration and the INS.

3.1 Inertial Reference Horizon

The theoretical horizon defines an omnipresent feature that may
be used for image stabilization, attitude registration and target lo-
calization. Note that it is distinct from a ‘horizon’ that may be
visible in the image. In forward-facing imagery acquired at gen-
eral aviation altitudes under clear sky assumptions, the horizon
is routinely observed to possess a smooth gradient rather than a
sharp discontinuity near the ground-sky boundary. This ‘gray’ re-
gion is a direct consequence of atmospheric effects and illustrates
the complexity of extracting the horizon contour using purely im-
age processing techniques. Without an obvious boundary, image
processing techniques may be influenced by scene structure and
cloud cover to detect a false horizon contour, and are not con-
sidered as reliable as a theoretical horizon computed from the
platform INS measurements. Previous efforts based on machine
learning techniques extracted the contour defined by the ground-
horizon boundary [Minwalla et al., 2011]. Such a contour can
reveal geological and man-made topological features that a theo-
retical horizon will not capture, and may prove useful when fly-
ing at low altitudes in a city or near rocky terrain. The approach
described in this paper does not tackle those issues and is more
suited for general aviation altitudes at 1000 feet or above over
roughly level terrain, where the horizon is distant and indistinct.

3.2 Target Behaviour Under ABSAA

A typical intruder for ABSAA is an aircraft encountered in non-
segregated airspace that will spend the majority of flight time
under non-maneuvering and non-accelerating conditions. Such
aircraft are likely to appear at or near the horizon. Targets that
appear above the virtual horizon are sky-lit and are expected to
have greater contrast than those that appear at or below the vir-
tual horizon. Targets that appear below the virtual horizon are
difficult to distinguish from ground clutter, and prove to be the
most challenging targets. However, for all oncoming cases where
one aircraft appears below the horizon, the other aircraft will ob-
serve the host as a high-contrast sky-lit target above the horizon.
This is not the case in descending overtake scenarios, where the
aircraft being overtaken cannot see the overtaking aircraft due to a
limited cockpit field of view. This suggests that descending over-
take scenarios are the most difficult to detect. Looking at these
non-co-altitude cases will form part of future work.

3.3 Derivation

We start the description of the model with the assumption that the
Earth is an ellipsoid devoid of topological features. At a given
platform altitude, the distance to the horizon (Dp) is defined by
a line from the aircraft centre of gravity to a point tangent to the
ellipsoid. This line forms a right-angled triangle between the air-
craft centre, the tangent point and the centre of the Earth. Fig.
1(a) depicts the direct linear distance to the horizon as Dp, while
Dsp depicts the corresponding ground-track distance and Ap is
the platform local above ground level (AGL). The INS reference
frame origin is placed at the aircraft’s centre of gravity.

Ap and the local earth radius, Rp, are the only two quantities
required to ascertain Dp, Dsp and the declination angle (θp) (Eq.
1).

θp = 90− asin
(

RP
Rp +Ap

)
, Dp '

√
2Ap(Rp +Ap)

Dsp = Rp · acos
(
Rp
Ap

) (1)

Note that atmospheric scattering will limit the visibility to well
within Dp, referred to as D′p. By contrast, atmospheric refrac-
tion will extend the distance to beyond Dp, referred to as D′′p .
Therefore, D′p < Dp < D′′p . Since atmospheric scattering is
the limiting factor, the apparent horizon in real, forward-facing
imagery is typically closer, at D′p, and by extension, positioned
lower in pixel coordinates. Note thatDsp can be treated similarly.

If perceived from a birds-eye configuration, the horizon projects
a circle of radius Dsp on the earth’s ellipsoidal surface, centred
at the aircraft position (Fig. 1(b)). Assume that the position,
Xp = [Xp, Yp, Zp, 1] and the attitude, [θp, φp, ψp], of the host
platform are known in a local Cartesian coordinate system. One
such Cartesian system is the local Universal Transverse Mercator
(UTM). Since the radius of the circle, Dsp, is strictly a function
of the platform altitude, points on the horizon circle (Xh) are
relative to the platform position and can be represented in the
host aircraft inertial reference frame (Eq. 2).

Xh(α) =


Xh

Yh

0

1

 =


Dsp cos(α− ψp)
Dsp sin(α− ψP )

0

1

 , where α = (−π, π)

(2)
Here, ψp denotes the heading of the aircraft. The azimuth, α,
spans the full circle with the plane of the horizon. Any camera
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model may be used to project body axis coordinates into image
space. For convenience, we use the pinhole camera model in our
work. Although not explicitly explored, this model may be aug-
mented for distortion correction if necessary. Eq. 3 denotes the
projection matrix, where K is the intrinsic matrix, [Rc| −Rctc]
the fixed calibration between the camera and the aircraft INS, and
[Rv| −Rvtv] the INS to world transformation.

x = PX, where P = K · [Rc| −Rctc] · [Rv| −Rvtv] (3)

The world horizon points may be projected into the camera plane
as per Eq. 4:

xh = [u, v,w]T = PXh, where


w > 0

1 ≤ u ≤ nrows

1 ≤ v ≤ ncols

(4)

The horizon circle may be sampled at equidistant intervals of α
and projected into image coordinates. The points of interest, de-
noted by xh (Eq. 4), are those that possess valid image coordi-
nates and are in front of the camera, the latter property defined by
a positive magnitude inw. Note that nrows and ncols refers to the
row and column pixel counts of the focal plane array respectively.
At least two suitable points are needed, therefore the sampling in-
terval for α, denoted as τα must be at least FOV ≥ 2τα where
FOV is the camera’s field of view.

Note that this solution is applicable regardless of the camera ori-
entation and is readily expanded to multiple cameras, indepen-
dently or serially calibrated to the aircraft INS reference frame.

3.4 Virtual Horizon Proximity (VHP) - ∆Htgt

Given the projection of a virtual horizon line in image coordi-
nates, the virtual horizon proximity (VHP) is defined as the dis-
tance between a potential target and the virtual horizon line. The
VHP concept exploits a characteristic unique to level-flight, col-
lision course targets, namely their quasi-constant separation from
the horizon for the duration of the course. This cue is strictly a
function of the altitude difference between the host and intruder
platforms and is invariant to the host and target attitudes. Given
the horizon line, ∆Htgt may be computed by the distance equa-
tion (Eq. 5), where xt is the target point, xh1 and xh2 are two
points from the projected horizon line.

∆Htgt =
(xi − xh1 )× (xi − xh2 )

| xh2 − xh1 |
(5)

To validate the VHP hypothesis, the measured intruder proximity
(Htgt) must be compared to a ground-truth estimate from known
host and intruder positions. This estimate can be generated as fol-
lows: Let us assume a plane parallel to the camera plane located
at the intruder that defines the background. As the intruder is
much closer than the theoretical horizon, the distant horizon line
must be projected onto this background plane coincident with the
intruder. Retaining the ellipsoid assumption, let Hp = Rp + Ap
and Hi = Ri + Ai, where Rp and Ap are as before, Ai is the
intruder altitude and Ri is the local ellipsoidal radius at the in-
truder. Then the ground-truth proximity in radians, ∆Ĥtgt, can
be derived via similar triangles and the cosine law (Eq. 6),

β = acos

(
H2
p +D2

i −H2
i

2DiHp

)
θ = acos

(
H2
p +D2

p −H2
i

2DpHi

)
∆Ĥtgt = (β − θ)/FOVpix

(6)

(a) Raw image

(b) After ROI weighting

Figure 2: An image from a head-on collision couse with the
March 2012 dataset with and without a ROI applied. The Bell 206
acted as the intruder. The image dimensions are 2448 columns by
2050 rows for reference. The ROI mask was generated by a Gaus-
sian PDF centred at the horizon with a half-width of 150 pixels.

Here, Dp is the distance from the platform to the horizon (from
Eq. 1) and Di the distance between the host and the intruder.
This Ĥtgt model is utilized for ground-truth estimates in Section
5.. Note that Dp >> Di for general aviation altitudes. For
instance, at an altitude of 300 m (Ap = 1000 ft), distance to the
horizon is ≈ 60 km. Furthermore, the projective relationship is
reasonable at long ranges, whereDi >> f and f is the lens focal
length. At close ranges, the assumptions begin to break down and
parallax effects limit the efficacy of this technique.

3.5 Horizon-weighted Region-of-Interest Mask

The primary purpose of a region-of-interest (ROI) mask is to re-
duce clutter and false positives by isolating the pixels where the
target of interest is likely to appear. A typical ROI is a rectangu-
lar crop with a step function weighting, such that pixels outside
the region are eliminated. Although the rectangular ROI is fast
to compute, it has the unfortunate side-effect of culling all tar-
gets that may occur outside the expected region of interest. We
propose the use of a horizon-weighted ROI mask as a target like-
lihood estimator. This weighted ROI can be implemented as a
spatial probability density function (PDF) centred at the virtual
horizon and applied perpendicularly to the direction of the hori-
zon line.

The concept of this idea arises naturally from biological vision
and the likelihood of expected/typical level-flight collision course
targets, as pixel intensities are attenuated based on their distance
from the ROI centre. By not discarding the pixels beyond the
ROI bounds, the ability to detect a strong target in unlikely lo-
cations of the image is retained. At the same time, strong false
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(a) Host - Bell 205

(b) Intruder - Bell 206

(c) Intruder - Harvard Mark IV

Figure 3: Host and intruder aircraft used for airborne near-
collision flight tests.

positives from the scene clutter have a reduced impact. Fig. 2(a)
illustrates a raw capture during a head-on collision run. In Fig.
2(b), a Gaussian PDF with a half-width of 150 pixels and centred
at the horizon line, is applied as a weighting mask. The choice
of function, bias and half-width are user-configurable parameters
and can be tailored to the host platform’s performance envelope,
although care must be taken as too narrow an ROI or too steep a
gradient may result in target drop-outs.

4. EXPERIMENTS

4.1 Airborne Flight Tests

Flight tests were flown with a Bell 205 helicopter acting as a sur-
rogate UAS (Fig. 3(a)) [Ellis and Gubbels, 2005]. A Bell 206 ro-
torcraft (Fig. 3(b)) and a Harvard Mark IV trainer fixed-wing air-
craft (Fig. 3(c)) acted as the intruders. Flights were flown in con-
trolled airspace near the Flight Research Laboratory at Ottawa In-
ternational Airport (CYOW). Common test conditions consisted
of visual meteorological conditions (VMC) at high visibility in
excess of 15 statute miles (24 km). Tests were conducted in
the morning and afternoon to encounter different solar zenith an-
gles. Each sortie consisted of 6-10 collision geometries, where
each collision geometry was flown from ∼ 15 km separation to
within 100 meters. Data was collected on head-on, azimuthal off-
set, chase, descending head-on and descending overtake trajecto-
ries. The aircraft were instrumented with an automatic dependent
surveillance-broadcast (ADS-B) transceiver and an INS [Leach et
al., 2003]. An “Intercept Display”, parsing the on-board ADS-B

Figure 4: Modeled temporal VHP for collision course targets at
different relative altitudes to the host platform. Nominal altitude
was set to 1000 ft. “Target Miss Distance” indicates the altitude
differential in metres between the host and each intruder.

data, provided range and navigation guidance to the flight crew
for beyond visual line of sight operation [Keillor et al., 2011].

4.2 Instrument Configuration

A multi-camera array, dubbed Cerberus, was rigidly mounted to
the port-side external mount of the Bell 205. Each imager con-
sisted of a 5 megapixel monochrome sensor operating at 15 fps.
Monochrome sensors were chosen to enhance focal plane reso-
lution at the expense of colour fidelity. A fixed-focal-length lens
was installed per camera. The images were streamed over Ether-
net to a local rack-mount PC, where each frame was synchronized
via GPS time-stamp to the precision INS on board the Bell 205
and recorded for offline analysis. The total instrument field-of-
view nominally spanned 90-degrees from the forward look direc-
tion, with subsequent flights conducted with a variety of sensor
and lens configurations.

4.3 Selection of Benchmark Data

Although a considerable number of trajectories were flown, only
a selected subset of the data is presented for analysis and com-
parison. These benchmark datasets were chosen for their clar-
ity of the imagery, similar sensor configuration and favourable
scene conditions (high visibility, minimal cloud cover and oc-
clusions). A total of four collision trajectories were chosen for
analysis: three head-on and one azimuthal offset. Head-on colli-
sions represent the scenario limiting critical problem-space, due
to a maximal closure rate and a minimal observable intruder foot-
print. All frames of interest were acquired with the same forward-
facing camera to correlate the sensor noise characteristics across
datasets. Specific parameters for the flight tests are outlined in
Table 4. while relevant Cerberus parameters are presented in Ta-
ble 4..

The Harvard Mark IV was flown as the intruder for the July 2009
flight tests. Three cameras were outfitted with identical 12 mm
lenses at F#=4 and mounted nominally at 0, 45 and 90 degree az-
imuthal angles relative to the aircraft nose. The overlap between
adjacent cameras was nominally set at 5%. The March 2012 col-
lision trajectories were flown against the Bell 206 as the intruder.
In this particular dataset, the instrument configuration consisted
of two cameras, a forward-looking (0 degree) camera equipped
with a 23 mm lens and a 45 degree camera equipped with an
8 mm lens. The increased forward angular resolution translated
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Date and Time Intruder Ground Visibility Altitude Geometry Host Heading
[km] [ft ± 2σ] [deg ± 2σ]

July 8 2009
Harvard Mk IV Farmland 24 2000± 500

Head-On 273± 4
13:00 - 14:00 EST 10◦ Offset 105± 8

Mar 7 2012
Bell 206 Snow 24 2000± 500

Head-On 1 236± 2
9:00 - 10:00 EST Head-On 2 246± 2

Table 1: Benchmark Datasets from July 2009 and March 2012

Parameter Value UnitsJuly 2009 March 2012
Cameras 3 2 -
Azimuth configuration (0◦, 45◦, 90◦) (0◦, 45◦) deg
Total FOV 113◦ × 34◦ 75◦ × (18◦, 50◦) deg
Focal length (f) 12 0◦=23, 45◦=8 mm
Focal ratio (F#) 4.0 (0◦, 45◦)=2.8 -
Angular resolution 0.3 0◦=0.15, 45◦=0.43 mrad/pixel
Focal plane dimensions 2448× 2050 (×3) 2448× 2050(×2) pixels

Table 2: Cerberus Array Parameters

into a target visible at greater ranges at the expense of field of
view.

5. RESULTS AND DISCUSSION

5.1 Temporal VHP - ∆Htgt(t)

The target VHP measured over a sequence of images is expected
to indicate co-altitude collision-course behaviour. Fig. 4 presents
the behaviour of a MATLAB model simulating level -flight col-
lision -course intruders approaching a host UAS at various alti-
tude differentials. The abscissa denotes range while the ordinate
depicts the VHP as a function of range. Here, range is used in-
terchangeably with time by assuming a constant closing velocity.
It can be observed that the absolute VHP is directly correlated to
the altitude differential, with larger VHP indicating larger correc-
tions. Furthermore, as the intruder approaches the host, the VHP
grows non-linearly for all cases except the co-altitude one. This
indicates that a small absolute VHP value and minimal temporal
variation are both indicators of collision-course behaviour.

To experimentally verify this phenomenon, we compare the mea-
sured VHP (Htgt) to the ground-truth VHP (Ĥtgt) derived in Eq.
6. Recall that the ground-truth VHP is the height differential ex-
tracted from the INS data recorded on-board host and intruder
aircraft. Fig. 5 contains the VHP plots acquired from the July
and March datasets respectively. In each curve, the abscissa is
the range and the ordinate is the proximity to the projected hori-
zon measured in degrees. Points represent the per-frame VHP
(Eq. 5) converted into degrees via the known camera scale factor.
A trend-line is depicted to enhance readability. The dotted grey
line illustrates the modeled proximity derived in Section 3.4, with
error bars indicating the ±2σ = 0.1 deg error in the on-board
INS attitude measurements of the host and intruders [Leach et
al., 2003].

It is observed that the measured VHP tracks the model consis-
tently for the duration of the flight geometry in all four plots.
Plots for both intruder types are on track, demonstrating the ro-
bustness of the cue against variations in the intruder radiance pro-
file. In addition, the heading offset has no impact on the mea-
surement (Figs. 5(a) and 5(c)). However, two different head-on
collision trajectories flown within a few minutes of each other
can exhibit different temporal VHP profiles (Figs. 5(b) and 5(d)).
Periodic oscillations are present in the measured proximity val-
ues for July Head-on and March Head-on 1 (Figs. 5(a) and 5(b))

that are not explained by the models, or visible in July Offset or
March Head-on 2 geometries (Figs. 5(c) and 5(d)). It is spec-
ulated that these perturbations are tied to INS drift correction,
suggesting that optical methods could be utilized to augment atti-
tude measurements. Once again, the observed effect is minor and
the peak-peak variation remains well within the 2σ bounds of the
INS error.

Note that the deviation between measured and modeled proximity
curves will increase at close ranges due to parallax. A breakdown
of the assumption is visible in Fig. 5(d) but not obvious in the
other plots. Table 5.1 summarizes the plot results. Note that the
absolute deviation is miniscule, with the maximum peak-to-peak
variation limited to 0.51 degrees (observed in March Head-On
1). The maximum deviation from the model is 0.35 degrees ob-
served in March Head-On 2 (Fig. 5(b)). For all intents and pur-
poses, ∆Htgt(R) is roughly constant. In summary, ∆Htgt(R)
is a quasi-constant cue for collision-course targets, consistent be-
tween trajectories and is robust against changes in the intruder
type, radiance profile and background clutter.

5.2 Comparison to False Positives

To observe the proximity effect, we compare the temporal VHP
of the known, true target against other false positives detected in
the scene. Target detection and tracking was implemented via al-
gorithms developed locally at NRC. These algorithms rely on vi-
sual cues unique to collision course targets augmented by Kalman
filtering for a robust, real-time estimation.

Fig. 5.3 illustrates the proximity plots of the ground-truth target
and four other highest-likelihood false positives. The abscissa
denotes the range while the ordinate denotes the virtual horizon
proximity (VHP) measured in pixel coordinates. The diamond
markers show the true target while false positives are indicated
by coloured lines. It is observed that all detected false positives
are below the horizon, corresponding to false targets embedded
in ground clutter. The true target has the minimum distance to
the virtual horizon line (smallest | ∆Htgt |) and maintains quasi-
static distance to the horizon line in all four datasets. However,
it is observed that false targets also maintain a relatively constant
separation from the horizon line. This may be partially explained
by the difference in closing rates between the true target (fast)
and ground clutter (slow). The results suggest that VHP is a use-
ful discriminator of collision course targets from other false pos-
itives, and furthermore that the minimum absolute separation is a
better discriminator than the temporal VHP. Testing against two
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(a) July Head-on - Harvard
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(b) March Head-on 1 - Bell 206
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(c) July 10-degree offset - Harvard
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(d) March Head-on 2 - Bell 206

Figure 5: Temporal VHP profiles from the July 2009 and March 2012 datasets. Individual data points (in blue) represent the per-frame
VHP (Eq. 5) converted into degrees via the known camera scale factor. A trend-line (in red) is shown to enhance readability. The
dotted grey line with error bars illustrates the modeled proximity (Eq. 6). The height of the error bars is derived from the ±2σ = 0.1
deg error in the on-board INS attitude measurements.

Aircraft Trajectory Peak-Peak [deg] Max Deviation [deg]

Harvard
Head-on 0.51 0.15

10◦ Offset 0.32 0.14

Bell 206
Head-on 1 0.52 0.21
Head-on 2 0.46 0.35

Table 3: Peak-Peak variation between predicted and measured virtual horizon proximity (VFP)

intruders, one co-altitude and one not, is required to demonstrate
the utility of temporal VPH in discriminating between a collision-
course and a non-collision-course intruder. However, such data is
not available yet and is relegated to future work. Note that the
overlap of multiple targets at close range in Fig. 6(c) is an ar-
tifact of the track estimation algorithm currently under develop-
ment and has little bearing on the analysis.

5.3 Detection Performance of Weighted ROI Mask

Since a region-of-interest limits the scene to areas of interest, it
stands to reason that horizon-weighted ROI masks can lead to
fewer false positives and consequently a greater range at earliest
detection (Rdet). Six popular feature detectors were compared to
determine the impact of ROI weighting on Rdet. Seven feature
detectors were identified in prior work [Tulpan et al., 2014], of
which the following six were chosen for comparison: FAST [Ros-
ten et al., 2010], Shi-Tomasi [Shi and Tomasi, 1994], Harris-
Plessey [Harris and Stephens, 1988], MSER [Matas et al., 2004],
SIFT [Lowe, 2004] and SURF [Bay et al., 2006]. Detector im-
plementations were sourced from the OpenCV library version

2.4.9 (64-bit) and interfaced into MATLAB via the mexopencv

API [Yamaguchi, 2015]. The actual range values are expected
to be slightly different from prior work due to the differences in
feature detector settings and the OpenCV version. Nonetheless,
the overall trend is expected to be consistent.

Table 5.3 contains the results of this comparison. All four bench-
mark datasets were tested against the six algorithms. The number
of features detected per frame was restricted to 50, and the ROI
mask was chosen to be a Gaussian PDF at a half-width of 150 pix-
els centred at the virtual horizon line. Each element of the table
denotes the range at earliest detection, Rdet, in units of kilome-
tres, as observed for that dataset-algorithm-weighted/unweighted
combination. The performance improvement is generally posi-
tive across all chosen algorithms with a weighted ROI. The effect
is significant in some cases (July 10◦-offset and March Head-
on 1) and almost negligible in others (March Head-on 2). The
degree of variability bears further investigation. The FAST al-
gorithm performed the best and posted the greatest Rdet values
in both unweighted and weighted categories and across all four
datasets, which is consistent with earlier work. Dashes indicate
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(b) March Head-on 1 - Bell 206
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(c) July 10◦ offset - Harvard
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(d) March Head-on 2 - Bell 206

Figure 6: Comparison of true target proximity to false positives tracked across the image sequence. The abscissa denotes the range
while the ordinate denotes the virtual horizon proximity (VHP) measured in pixel coordinates. Top five targets are presented. The true
target, indicated by diamond markers, is observed to have the smallest | ∆Htgt | and maintains quasi-static proximity to the virtual
horizon in all four datasets. The false positives have a greater | ∆Htgt |, but are also quasi-static with thscene.

Detector Harvard - Head-on Harvard - 10◦ Offset Bell 206 - Head-on 1 Bell 206 - Head-on 2
No ROI 150-pixel No ROI 150-pixel No ROI 150-pixel No ROI 150-pixel

FAST 3.197 4.937 1.229 4.044 3.291 7.249 1.569 1.619
Shi-Tomasi 1.404 4.778 1.127 3.259 2.803 5.390 1.569 1.569
Harris 0.965 4.723 1.086 3.225 2.417 5.180 1.569 1.569
MSER - 0.964 0.817 0.893 - 1.572 - -
SIFT 0.984 2.287 0.906 1.940 1.546 2.378 1.569 1.569
SURF 0.943 0.943 0.865 1.264 0.164 2.270 - -

Table 4: The range at earliest detection, Rdet, with and without a weighted ROI Mask. Each row indicates an Rdet value kilometres
for that feature detector. Columns indicate the datasets, evaluated with and without the ROI mask. A Gaussian PDF with a half-width
of 150-pixels was used to generate the ROI.

cases where the algorithm could not pick up the true target at all.
The highest incidence of failure was observed with MSER, sug-
gesting that it is a remarkably poor candidate for airborne target
detection. The SURF algorithm also failed for the March Head-
on 2 dataset. It is noted that use of the ROI mask shifted MSER
performance from failure to marginal success in two out of four
cases.

6. CONCLUSION AND FUTURE WORK

Presented here is the rationale that the horizon is an important
feature for ABSAA applications. A model for the virtual horizon
line was presented as a projection of the INS horizon into im-
age coordinates. Proximity to the virtual horizon could then be
calculated and denoted as the virtual horizon proximity (VHP).
The model was tested against simulation results and augmented
by local Earth radius corrections for small-angle sensitivity. The

predictions of the model were experimentally verified against a
benchmark dataset of collision-course trajectories flown at the
National Research Council’s Flight Research Laboratory. An ROI
mask, centred at the horizon, was explored as a mechanism for
improving the earliest detection range,Rdet. This hypothesis was
experimentally verified by measuring the performance of six pop-
ular feature detectors with and without the ROI mask. It was ob-
served that the use of the ROI universally improved Rdet across
all feature detectors and all datasets, sometimes by a factor of
two, and in two cases, recovered targets where the feature detec-
tor failed in the unweighted case.

ACKNOWLEDGEMENTS

The authors thank the late Stephan Carignan (1962 - 2014) and
Robert Erdos for their expert flying, Gregory Craig and Sion Jen-
nings for their helpful feedback, and Dan Tulpan, Nabil Belacel

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-123-2015

 
129



and Fazel Famili for their work on the original analysis.

REFERENCES

Bay, H., Tuytelaars, T. and Gool, L. V., 2006. SURF: Speeded
up robust features. In: Proc. European Conference on Computer
Vision (ECCV), pp. 404–417.

Carnie, R., Walker, R. and Corke, P., 2006. Image process-
ing algorithms for uav “sense and avoid”. In: Proc. IEEE In-
ternational Conference on Robotics and Automation, Orlando,
Florida, pp. 2848–2853.

Dey, D., Geyer, C., Singh, S. and Digioia, M., 2009. Passive,
long-range detection of aircraft: Towards a field deployable Sense
and Avoid System. In: Proc. Conference on Field and Service
Robotics, pp. 1–10.

Dey, D., Geyer, C., Singh, S. and Digioia, M., 2011. A Cascaded
Method to Detect Aircraft in Video Imagery. International Jour-
nal of Robotics Research 30(12), pp. 1527–1540.

Ellis, K. and Gubbels, A. W., 2005. The National Research Coun-
cil of Canada’s Surrogate UAV Facility. In: Proc. UVS Canada
Conference.

Fasano, G., Accardo, D., Tirri, A. E., Moccia, A. and Lellis,
E. D., 2014. Morphological Filtering and Target Tracking for
Vision-based UAS Sense and Avoid. In: Proc. International Con-
ference on Unmanned Aircraft Systems, pp. 430–440.

Fasano, G., Moccia, A., Accardo, D. and Rispoli, A., 2008.
Development and Test of an Integrated Sensor System for Au-
tonomous Collision Avoidance. In: Proc. International Congress
of the Aeronautical Sciences, pp. 1–10.

Forlenza, L., Carton, P., Accardo, D., Fasano, G. and Moccia,
A., 2012. Real Time Corner Detection for Miniaturized Electro-
Optical Sensors Onboard Small Unmanned Aerial Systems. Sen-
sors (Basel, Switzerland) 12(1), pp. 863–77.

Harris, C. and Stephens, M., 1988. A Combined Corner and Edge
Detector. Proc. Alvey Vision Conference pp. 23.1–23.6.

Keillor, J., Ellis, K., Craig, G., Rozovski, D. and Erdos, R., 2011.
Studying Collision Avoidance by Nearly Colliding: A Flight Test
Evaluation. In: Proc. Human Factors and Ergonomics Annual
Meeting, pp. 41–45.

Lai, J., Ford, J. J., Mejias, L. and O’Shea, P., 2013. Characteri-
zation of Sky-region Morphological-temporal Airborne Collision
Detection. Journal of Field Robotics 30(2), pp. 171–193.

Leach, B. W., Dillon, J. and Rahbari, R., 2003. Operational
experience with optimal integration of low-cost inertial sensors
and GPS for flight test requirements. Canadian Aeronautics and
Space Journal 49(2), pp. 41–54.

Lowe, D. G., 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vision
(IJCV) 60(2), pp. 91–110.

Matas, J., Chum, O., Urban, M. and Pajdla, T., 2004. Robust
wide-baseline stereo from maximally stable extremal regions.
Image and Vision Computing 22(10), pp. 761–767. British Ma-
chine Vision Computing 2002.

Mendelson, J., 2014. Innovations in Unmanned Vehicles - Land,
Air, Sea (Technical Insights). Technical Report D56B-01, Frost
and Sullivan.

Minwalla, C., Watters, K., Thomas, P., Hornsey, R., Ellis, K. and
Jennings, S., 2011. Horizon extraction in an optical collision
avoidance sensor. In: Proc. Canadian Conference on Electrical
and Computer Engineering.

Rosten, E., Porter, R. and Drummond, T., 2010. Faster and Better:
A Machine Learning Approach to Corner Detection. IEEE Trans.
Pattern Anal. Mach. Intell. (PAMI) 32(1), pp. 105–119.

Salazar, L. R., Sabatini, R., Ramasamy, S. and Gardi, A., 2013. A
Novel System for Non-Cooperative UAV Sense-And-Avoid. In:
Proc. European Navigation Conference, pp. 1–11.

Shi, J. and Tomasi, C., 1994. Good features to track. In: Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 593–600.

Tulpan, D., Belacel, N., Famili, F. and Ellis, K., 2014. Exper-
imental evaluation of four feature detection methods for close
range and distant airborne targets for Unmanned Aircraft Systems
applications. In: Proc. International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, pp. 1267–1273.

Yamaguchi, K., 2015. Mex OpenCV Library. https://github.
com/kyamagu/mexopencv. Accessed: 2015-04-01.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-123-2015

 
130




