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ABSTRACT: 

 

Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring 

and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve 

the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been 

rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is 

known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS 

for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct 

georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the 

Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS 

to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor 

environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated 

floor plan will compare with the known plan for both validation and verification. 

 

 

1. INTRODUCTIO 

Mobile mapping refers to a means of collecting geospatial data 

using mapping sensors that are mounted on a mobile platform. 

The idea of mobile mapping is basically implemented by 

capturing more than one images which includes the same 

feature point from different location. Then, the 3D spatial 

information of objects will be calculated and measured with 

respect to the mapping frame (Tao and Li, 2007). Besides, 

multi-sensor is corresponding with multi-platform that mounted 

on a various vehicles, such as automobile, aircraft, water-based 

vessels and unmanned aerial vehicle (UAV). In the early 2000s, 

a lot of land vehicular-based mobile mapping systems have 

been utilized in commercial applications. It means that MMS is 

able to meet the demand of spatial information system operators 

for rapid spatial data acquisition. However, most of land 

vehicular based MMSs has to spend lots of cost on developing 

different kind of system so that limiting their growth. In 

addition, the primary limitation of such land vehicular-based 

systems in terms of operation flexibility is the dependence of 

the availability and quality of road networks. 

 

Because of the increasing demand for indoor accurate maps, the 

MMS is shifting to the next phase, indoor environment. This 

application is used in emergency, indoor navigation, Location 

Based Service (LBS), etc. SLAM is the algorithm that builds or 

updates the map of an unknown situation and simultaneously 

tracks the position and attitude of vehicle. In outdoor 

environment, GNSS is regarded as the primary positioning 

sensor. However, the indoor environment is more difficult for 

localization. Therefore, to solve this problem, most of SLAM 

algorithms always use several types of sensors, such as camera, 

IMU, laser scanner and based on the robotic configuration. The 

core integrating algorithm includes Kalman filters, particle 

filters and other image processing technologies. In the field of 

SLAM applications, most of algorithms rely on using landmark-

based and raw-data approaches. In frame-to-frame registration 

SLAM, it is required visual feature points as an initial 

transformation state for the Iterative Closet Point (ICP) based 

on the RGB-D sensors (Litomisky, 2012). On the other hand, 

2D SLAM with LIDAR that integrated with IMU aiding 

navigation system is also improved the accuracy of planar map 

(Kohlbrecher, 2011). The visual (VSLAM) is one of the SLAM 

algorithms that uses continuous images from single camera or 

stereo cameras and extracting the feature point to calculate the 

relationship between two images (Karlsson, 2005). However, 

the problem is that it needs extra expense to set up some 

landmarks and the positioning accuracy relies on the density of 

those marks. It is not very appropriate when robot is searching 

and exploring the unknown environment.  

 

The core localization algorithm is an inertial navigation system 

(INS). An INS is a self-contained navigation technique in which 

measurements provided by accelerometers and gyroscopes are 

used to track the position and orientation of an object relative to 

a known starting point, orientation and velocity. In addition, 

GNSS is a universal, all-weather, world-wide positioning 

system that provides time, position and velocity data. Both 

systems can be used as stand-alone navigation tools or in 

conjunction with other sensors for various purposes. Moreover, 

the integration of GNSS and INS can overcome problems with 

environments like urban canyons, forests and indoor settings 

where GNSS alone cannot provide service. In the classical 

approach, the KF is applied in real-time applications to fuse 
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different data from various sensors while optimal smoothing is 

applied in the post-mission mode. The basic idea of using the 

KF in INS/GNSS integration is to fuse independent and 

redundant sources of navigation information with a reference 

navigation solution to obtain an optimal estimate of navigation 

states, such as position, velocity and orientation. The primary 

concept is to integrated different type of sensor. In indoor 

environment, the indoor MMS localization will switch the other 

locating mode based on taking the place of GNSS. The visual 

odometry is an auxiliary algorithm that determining the position 

and orientation by processing serial images. In this research, the 

indoor MMS is composed of the SLAM technology and 

INS/GNSS and can build the indoor floor plan for indoor 

navigation application. 

 

In order to generate the floor plan with high accuracy in real-

time solution, the less computing time and dataset are necessary. 

Moreover, the robust loop-closure is also the primary issue to 

be improved. The approach that transformed 3D point cloud to 

2D floor plan is implemented by using histogram of point 

density and Hough transform algorithm for line segments 

extracted (Okorn, 2009). Turner proposed the watertight model 

from 2D grid map or 3D point-clouds and triangulating the 2D 

sampling to interior or exterior set (Turner, 2014). Rao-

Blackwellized particle filters (RBPF) is one of popular 

algorithm in recent years. It have been adopted as an effective 

method to solve the SLAM problem (Grisetti, 2007).   

 

In indoor mapping system, most of configuration is included the 

RGB-D sensor and laser scanner. To achieve the high accurate 

application and control, the Inertial Measurement Unit is always 

used for positioning and attitude estimation. Using Kinect 

sensor for mobile robot has become more popular. The mobile 

robot equipped with Kinect and laser scanner based on wheel 

odometry can easy implement the 2D and 3D SLAM (Oliver, 

2012). Unmanned Aerial Vehicle (UAV) has the great potential 

to indoor mapping and navigation because of its flexibility. The 

laser scanner and mono-camera are standard accessories for 

UAV indoor mapping system (Wang, 2013). In order to achieve 

the 3D indoor mapping, most of platform also uses the RGB-D 

sensor. The system also included the IMU sensor to estimate the 

six-degree-freedom pose in GPS-denied environment (Morris, 

2010). The system of indoor UAV is enable to flight in cluttered 

environment and illuminate the scene as well (Bachrach, 2012). 

Besides, the indoor portable mapping is also proposed for 

human. It creates the payload for human-portable mapping 

system and mapping of different floor (Fallon, 2012).   

 

According to previous research, this study proposes the data 

processing modules including integrated Position and 

Orientation System (POS) module, and visual base module. 

Based on these approaches, we designs the payload for indoor 

MMS to generate the floor plan and compare to different 

sensors and positioning algorithms.  

 

2. PAYLOAD DESIGN AND IMPLEMENTATION 

2.1 Robotic System and Architecture 

In our research, the algorithm and the configuration is based on 

the Robot Operating System (ROS). All the software is installed 

on the control notebook. The Figure 1 shows the ROS 

Architecture. The robot is the Turtlebot2 and the mobile base is 

kobuki base. The control laptop connect to two different sensor 

and robot base to implement the indoor mobile mapping. 

 

Figure 1. The indoor robot system and Architecture 

 

2.2 Payload Design 

To implement the indoor MMS, the prototype of this paper is 

included the tactical grade Inertial Measurement Unit (IMU), 

the Kinect RGB-D sensor and light detection, ranging (LIDAR). 

The hardware consists of RGB-D Kinect sensor, Hokuyo laser 

scanner (Hokuyo UST-20 LX) and IMU. The payload is 

demonstrated in Figure2.  The Table 1 shows the specification 

of IMU for indoor pose estimation.  

 

 

Figure 2. The payload design of indoor MMS prototype 

 

 
Table 1. Specification of IMU 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-183-2015

 
184



 

3. INDOOR POSITIONING SYSTEM 

In this paper, three kind of positioning algorithms will be 

implemented and compared. The positioning algorithms are INS 

Direct Georeferencing, Robotic wheel odometry and Visual 

odometry.  

 

3.1 INS Direct Georeferencing  

For a georeferencing process which puts POS stamps on images 

and a measurement process that obtains three-dimensional 

coordinates of all important features. INS system, several 

architectures for INS/GNSS integration implementations are 

known. The most common integration scheme used today is 

loosely-coupled (LC) integration scheme. It is the simplest way 

of integrating a GNSS processing engine into an integrated 

navigation system. However, GNSS is not useful in indoor 

environment. To improve the indoor POS estimation, filtering is 

used in the first step, an optimal smoothing method, such as the 

Rauch-Tung-Striebel (RTS) backward smoother, can be applied. 

It uses filtered results and their covariance as a first 

approximation. This approximation is improved by using 

additional data that was not used in the filtering process. As the 

integrated scheme and the software shown in Figure 3, the 

KF/RTS smoother integrate different kind of sensor and with 

the well self-contained POS results. The  

 

 

 

Figure 3. INS integrated scheme and the software developed for 

indoor MMS 

 

3.2 Robotic Wheel Odometry 

Wheel odometry is one of the important information for robot 

position estimation. The odometry information is measured 

from wheel rotation. It is known as a function of time from two 

wheels on a fix axle. The position and heading information can 

be calculated by the function of time. By combining the 

gyroscope embedded in robot, the performance of robot 

position will achieve higher accuracy (Chong, 1997).  

3.3 Visual Odometry  

In computer vision, visual odometry is the useful and popular 

for positioning and heading estimation. The pose estimation is 

computed by the displacement between two images in a moving 

window. In this study, we adopts open source, LIBVISO2 

which is developed by Geiger. The key concept of the 

LIBVISO2 is using displacement as the pose measurement and 

adjusting by non-linear least squares optimization (Lategahn, 

2012). In this paper, the open source is modified and combined 

with other positioning algorithms. The position results is real 

time shown in the Google Earth and the coordinate in also 

transfer into longitude and latitude. The software is presented in 

Figure 4. 

 

 

Figure 4. Visual odometry algorithm and real-time result in 

Google Earth 

 

4. RESULTS 

In order to evaluate the performance of indoor MMS 

result from different kinds of algorithms or sensors, the 

experiments is divided into two stages. The first stage 

focuses on the performance of indoor position results 

which includes the INS DG, robotic wheel odometry and 

visual odometry. On the other hand, the second stage 

concentrates on the capability of indoor MMS and the 

accuracy of planar map. The experimental areas are in 

National Cheng Kung University, Dept. of Geomatics 

building, the Figure 5 is displayed the whole experimental 

field. 

  

 

Figure 5. The floor plan of experimental areas. 

 

4.1 Indoor Positioning Comparison   

In the first stage, there are three kind of results from 

different indoor positioning algorithms. The first 
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experimental trajectory is follow the red number, 1, as 

shown in Figure 5. The total length is about 50 meters, 

and the duration of experiment is about 8 minutes. After 

that, the experimental trajectory is extended to 60 meters, 

like the blue number 2 shown in Figure 5. In experiment 2, 

It is included the rapid U-turn. In Figure 6 and 7, there are 

four trajectories responding with different results. The red 

line is INS DG result, the green line is the result from 

robot mobile base and the blue line shows the visual 

odometry solution. The black line is the simulated ground 

truth for comparing each algorithms. As you can see from 

these two figures, the INS DG result is more close to 

ground truth. The robot solution is not fitted to ground 

truth. There are the orientation and scale problem in that. 

Furthermore, because of the misalignment between IMU 

and robot, the DG result is not matched with robotic 

wheel odometry. In the figure 7, DG solution is more 

stable and got the better performance. Sometimes, the 

visual solution can provide more stable heading 

information, but the scale and image quality are the 

important issues to figure out. As you can see from Figure 

7, the Visual odometry solution has the heading problem 

when the robot makes the rapid U-turn. The results is in 

terms of the overlap and quality of image.  

 

The table 2 shows the analysis of each algorithms. It is 

worth mentioning that the relative precision results of DG 

and Robotic wheel odometry are under the 2%. The 

Visual odometry relative precision is about 5%. Although 

the relative precision of robot is better than DG, there has 

the scale and heading problem of it. Comparing with 

ground truth, the DG can provide the more stable and 

better position than others. 
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Figure 6. The comparison between indoor positioning solutions 

and ground truth in experiment 1 
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Figure 7. The comparison between indoor positioning solutions 

and ground truth in experiment 2 

 

 

Misclosure 

(Unit: m) 
Relative precision 

Experiment 1 

INS_DG 1.0429 2% 

Robotic wheel 

odometry 
0.9338 1.8% 

Visual 

odometry 
2.2449 4.4% 

Experiment 2 

INS_DG 0.871 1.4% 

Robotic wheel 

odometry 
0.496 0.8% 

Visual 

odometry 
3.066 5.1% 

Table 2. The misclosure and relative precision results. 
 

4.2 Indoor Planar Map  

In the second stage, the indoor MMS implemented in the 

indoor environment to extract the floor plan. There are 

two indoor floor plan from different sensor, Kinect and 

laser scanner. Both of plans are generated by same mobile 

base. The scan results shown in Figure 8, it is generated 

by the Kinect sensor. In Figure 9, the result is transfer 

into local level frame to display. As you can see from 

these pictures, it is not reasonable at the room. The shape 

of room is skew and has some problem in loop-closure.  

The Kinect sensor has the ability to provide 3D point 

clouds data, but sometimes the performance and stability   

is not good enough to finish the high accuracy survey.  
 

The second result is shown in Figure 10. Using the laser 

scanner, the accuracy of indoor map is better than the result 

from Kinect sensor. And the experiment area is extended to the 

other side of building. After the coordinate transformation, the 

planar maps is in the same coordinate system shown in Figure 

12. The red map is the reference map generated from other 
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indoor MMS. In the right side of figure, the map is perfectly 

correspond to each other. However, there are some deformation 

and skew in the left side.  

 

 
Figure 8. The floor plan from Kinect sensor 
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Plannar Map from Kinect

 
Figure 9. The floor plan result from Kinect sensor shown in 

local level frame 

 

 
Figure 10. The floor plan from laser scanner 
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Figure 11. The floor plan result from laser scanner shown in 

local level frame 

-60 -50 -40 -30 -20 -10 0

-30

-25

-20

-15

-10

-5

0

5

10

 

 

Reference Plannar Map

Plannar Map from Laser Scanner

 
Figure 12. The comparison between reference map and floor 

plan result from laser scanner in local level frame 

 

5. CONCULSION  

This research proposes the architecture of equipment payload 

for indoor MMS. In first stage, the different positioning is 

implemented in indoor experiment. The performance of each 

algorithms can be seen in the comparison table. Even though 

the robotic wheel odometry is achieve the higher relative 

precision, there are the scale and heading problem to resolve. 

With the ground truth, the INS DG results is more matched with 

it. The misclosure of visual odometry is larger than others, but it 

is more stable when the duration of experiment is longer. In the 

future, it is necessary to combine each algorithm to get the 

better positioning results. In the indoor plan generated part, two 

kind of results are compared. The laser scanner has the better 

performance than Kinect sensor. However, the indoor MMS is 

also needed to the RGB-D sensor to provide the image and 

color point clouds to implement the 3D scene generated and 

visual odometry. Therefore, the indoor payload design included 

the laser scanner for planar map generated, Kinect sensor for 

visual odometry, 3D color point clouds and IMU sensor for the 

higher positioning performance. 
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