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ABSTRACT:  
 
Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its 
availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image 
acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver 
scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to 
achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This 
paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, 
common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like 
SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized 
as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. 
Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition 
has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a 
subsequent 3D classification method is also described in this paper. 
 
 
 

1. INTRODUCTION 

The main concern of real time situation awareness is to acquire 
fast, accurate and detailed information of the scene. Traditional 
image acquisition by manned aircrafts can well satisfy the 
requirement for accuracy, but its application is restricted by 
high costs and weather dependence. As a novel modality for 
aerial image acquisition, the micro aerial vehicle (MAV) has 
demonstrated great potential for situation awareness, especially 
under extreme conditions like natural disasters or mass events. 
Compared with traditional manned aircrafts, MAVs are more 
cost-effective and weather independent (Grenzdörffer et al., 
2008). Besides, MAVs are flexible to acquire high-resolution 
images from different viewing directions and hence provide 
thorough details of emergency scenes, which is highly valued 
for timely awareness and evaluation of urgent events. 
 
However, MAV based situation awareness still faces some 
challenges. First, the application of MAVs is currently restricted 
to small area mapping because of its poor endurance, stability 
and the restriction of flight allowance only in line of sight of the 
ground based pilot. Second, the accuracy and stability of MAV 
localization are still not guaranteed. Since the deployment of 
ground control points is usually limited by spatial and time 
restrictions (Eling et al., 2014), direct geo-referencing is 
therefore preferred. However, MAVs are usually equipped with 
light but less-accurate GPS/IMU system due to load limitation, 
in such platforms, even a few seconds GPS signal loss can 
result in big error due to the high drift rate of the on-board IMU 
(Cesetti et al., 2011). For this reason, the direct geo-referencing 
for rotary wing systems is not yet solved (Nexa et al., 2015). 
Third, MAV based situation awareness often suffers from 
occlusions due to its low flight altitude, which may result in 
fragmentary view (e.g. loss of building facade) and therefore 
cause difficulty in 3D reconstruction.  
 

Table 1 compares MAV aided survey with manned aircraft 
aided survey. It is worth noting that these two image acquisition 
methods have complimentary characteristics. In view of this, it 
makes sense to fuse imagery taken from MAVs and manned 
aircrafts to obtain a better overall description of the scene. In 
principle, imagery acquired by manned aircrafts in higher 
altitudes provides a wider overview of the area, which supports 
effective overall planning and coordination; while imagery from 
MAV provides more details of the area of interest, which 
contributes to timely awareness and evaluation of emergencies. 
In addition, a fusion of both image types can provide a more 
complete view of the disaster area with detailed views on 
certain places as they are taken from different viewing 
directions and heights. Moreover, a parallel acquisition of aerial 
images from MAVs and aircrafts with minimal time-offset 
allows an efficient fusion of both image datasets for real-time 
situation awareness applications. 
 

 MAV Aided Survey 
Manned Aircraft 

Aided Survey 

advant- 
ages 

flexibility 
large overlap 
rich details 

large coverage 
stability 
high quality GPS/IMU 

dis-
advant-

ages 

unguaranteed safety 
wind turbulence 
GPS failure 

time/money cost 
weather-dependence 
inadequate details 

Table 1. Comparisons between MAV and manned aircraft aided 
survey.  

Thus, a method for multi-view and multi-scale aerial imagery 
fusion is presented in this paper. The method can be divided 
into two procedures: first, the automatic absolute orientation of 
high-resolution MAV images using airborne image datasets 
with lower resolution as a reference; second, fusion of MAV 
and reference DEMs for subsequent classification. The paper 
analyses the problems, describes the methodology, the results 
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with experimental data and presents a concept for a subsequent 
3D classification method. 
 
 

2. MATERIAL AND METHODS 

The fundamental step of image fusion is to establish a common 
reference frame for multi-scale imagery (Schenk et al., 2014). 
Deploying ground control points is neither economical nor 
realistic in the face of urgent events; on the other hand, it is easy 
to acquire aerial imagery with known orientations from previous 
surveying task. Considering the fact that MAVs are usually 
equipped with low-accuracy GPS/IMU system while manned 
aircrafts are equipped with high-end GPS/IMU and stable 
calibrated cameras, it makes sense to align the MAV imagery to 
the georeferenced image dataset taken from the manned aircraft. 
This is solved by image matching between MAV imagery and 
georeferenced aerial imagery, and then the problem becomes an 
orientation issue. The main workflow is illustrated in figure 1 
and the processing details are elaborated below. 

 

Figure 1. Flowchart of implemented fusion method. 

 

2.1 SIFT matching 

The implemented method for MAV image orientation is based 
on the tie information between reference imagery and MAV 
imagery. Here we use SIFT algorithm (Lowe, 2004) for feature 
detection and matching. Normally, the image is convolved with 
Gaussian filters at different scales and generates successive 
Gaussian-blurred images. In our case, a priori knowledge of the 
scale difference between MAV imagery and reference imagery 
is acquirable, so we can down sample the MAV imagery to an 
approximate scale of the reference imagery. After matching 
down sampled MAV imagery with original reference imagery, 
an initial fundamental matrix can be accordingly calculated 
which provides an estimation of the correspondence for 
subsequent matching. 
 
 

2.2 Five point-RANSAC 

After image matching, a number of matching pairs are detected. 
However, feature based image matching algorithms, such as 
SIFT, are normally operating using local pixel information and 
do not take all geometric constraints into consideration, thus  
leading to wrong matching pairs in the image matching result. 
In order to filter out these pairs, the five point-RANSAC 
algorithm (Nistér, 2004) is applied to remove outliers of the 
matching pairs among MAV images. Two corresponding image 
points ݉ and ݉ᇱ located on different images are related by a 
fundamental matrix F: 
 

݉ᇱ்݉ܨ ൌ 0    (1) 
 

Where, 
det (F) = 0    (2) 

 
The camera on the MAV is self-calibrated during relative 
orientation and results in an initial estimation of intrinsic 
parameters, which compose the intrinsic matrix K. The 
fundamental matrix is then reduced to an essential matrix, 
denoted by E, and the above relationship becomes (Hartley, 
2004): 
 

ଵିܭܧ்ିܭ ൌ  (3)    ܨ
 
An essential matrix E has only five DOFs (Nistér, 2004). 
Consequently, to be a valid essential matrix E, it must further 
satisfy two more constraints, which are characterized by the 
following result: 
 

ܧ்ܧܧ2   െ ܧሻ்ܧܧሺݎݐ ൌ 0   (4) 
 
Then we get nine equations in the elements of E, where only 
two equations are independent. Given five corresponding 
points, we can construct five epipolar equations of (1), the 
singularity condition equation of (2), and nine equations of (4). 
Then the essential matrix can be estimated. Given a number of 
random matching pairs which contain five point-tracks, we can 
apply the five-point algorithm to each sample and get a number 
of hypotheses. The best hypothesis is selected by a robust 
measure over all the point-tracks and then filtered by iterative 
refinement (Triggs et al., 2000). 
 
2.3 GPS-based Filtering 

The preceding section describes how to filter out wrong 
matching pairs based on the strict geometric constraint between 
two images, yet there is still a requirement on the number of 
correct matching pairs. In practice, due to the significant 
differences of scale, viewing direction and illumination between 
MAV and manned aircraft imagery, the mismatching 
probability of feature-based image matching algorithms are 
expected to be high. A severe situation is that matching between 
MAV imagery and reference imagery often generates too few 
matching pairs to perform RANSAC. Under the circumstances, 
on board GPS information, despite its inaccuracy, can provide a 
rough estimation of the position and help filter out wrong 
matching pairs  
 
The relationship between image coordinate and ground 
coordinate can be expressed by the collinear condition equation: 
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ݔ െ ଴ݔ ൌ 	െ݂
ܽଵሺܺ െ ܺ௦ሻ ൅ ܾଵሺܻ െ ௦ܻሻ ൅ ܿଵሺܼ െ ܼ௦ሻ

ܽଷሺܺ െ ܺ௦ሻ ൅ ܾଷሺܻ െ ௦ܻሻ ൅ ܿଷሺܼ െ ܼ௦ሻ
 

      (5) 

ݕ െ ଴ݕ ൌ 	െ݂
ܽଶሺܺ െ ܺ௦ሻ ൅ ܾଶሺܻ െ ௦ܻሻ ൅ ܿଶሺܼ െ ܼ௦ሻ
ܽଷሺܺ െ ܺ௦ሻ ൅ ܾଷሺܻ െ ௦ܻሻ ൅ ܿଷሺܼ െ ܼ௦ሻ

 

  
 
where  f = focal length 
 x, y = image coordinates 
 ଴ = coordinates of the principal pointݕ ,଴ݔ 
 ܺ௦,	 ௦ܻ,	ܼ௦  = coordinates of projection center 
 X, Y, Z = object coordinates 
 
With available GPS information of the MAV dataset, the MAV 
block generated from relative orientation can be transformed 
into absolute frame; IO/EO parameters of each image can 
therefore be obtained. Consider a common tie point T, which is 
detected on at least two MAV images {M1, M2 …} and at least 
two reference images {R1, R2 …}, we can calculate the rough 
3D coordinate (ܺெ ,	 ெܻ ,	ܼெ ) of T with the orientation of the 
MAV image set {M1, M2 …} using equation (5) in combination 
with a least squares adjustment. At the same time, we can also 
perform forward intersection on the reference image set {R1, R2 
…} and get the coordinate of the same point T, denoted by 
(ܺோ , 	 ோܻ , 	ܼோ ). The distance between the two estimated 3D 
coordinates is calculated: 
 

ܦ ൌ ඥሺܺோ െ ܺெሻଶ ൅ ሺ ோܻ െ ெܻሻଶ ൅ ሺܼோ െ ܼெሻଶ       (6) 
 
In principle, if the current checking pair is correctly matched, 
then the 3D coordinates intersected by MAV image set and by 
reference image set should be quite close to each other. 
According to the positioning error of on-board GPS/INS system, 
a threshold Q is defined to judge the approximation of the two 
coordinates: if D > Q, this matching pair is judged to be a 
mismatched pair; otherwise, this matching pair is judged correct. 
It is assumed that the orientation of the reference dataset has 
better accuracy than the GPS position of the MAV dataset, so 
the coordinate (ܺெ,	 ெܻ,	ܼெ) generated from reference dataset is 
adopted as the valid 3D coordinate of tie point T. 
 
2.4 Orientation and fusion 

After filtering, we get a number of features with known image 
coordinates and object coordinates, which can therefore be used 
as ground control point (GCP) for MAV images orientation. If 
there are abundant GCPs, a few well distributed GCPs are 
chosen according to their coordinates. The final GCPs are 
introduced in the bundle adjustment to get the MAV block fully 
georeferenced. Since the GCPs are derived from the 
georeferenced dataset, MAV images are actually aligned into 
the same frame as the reference dataset. In this sense, a common 
reference frame is established. After orientation, the semi global 
matching (SGM) method (Hirschmuller, 2008, Angelo et al., 
2011) is employed to find the stereo correspondence of the 
orientated MAV images. 3D regular point clouds and digital 
surface models (DSMs) of MAV images are generated 
afterwards. In the following steps, the newly generated DSM 
from MAV images and the DSM generated from geo-referenced 
aerial images are fused under the established common reference 
frame. 
 
 

3. EXPERIMENTAL RESULTS  

In this section experiments are carried out to test the proposed 
method. Experimental results are analysed and the performance 
is evaluated.  
 
3.1 Test flights 

The test site (about 150ൈ150 m2) is located in the town of 
Germering in south Germany, containing sub-urban structures, 
fields and motorways. The reference dataset was acquired on 
16th June 2014 by the 4K sensor system with an accuracy about 
0.05m (Kurz et al., 2014); the flight height is nearly 700m with 
an image GSD of 10cm. An Asctec Falcon-8 platform was used 
for MAV dataset acquisition with a size of 770 x 820 x 125 mm 
and a maximum payload of 0.8 kg. The camera mounted on-
board was a GoPro HERO 3+ Black Edition whose focal length 
was fixed at 7.5mm. The MAV images are captured slightly 
shifted on 11th July 2014 at a flight height of 100m with an 
image GSD of 2cm. In view that the MAV platform is mounted 
with a low-accuracy GPS/IMU system while the 4K system is 
equipped with high-end GPS/IMU and stable calibrated 
cameras, the 4K image dataset is assumed to have a higher 
absolute accuracy than the MAV image dataset. 17 MAV 
images of a recycling depot were chosen for the experiment, 
while 6 4k images containing the same area were chosen as the 
reference images. Figure 2 shows a 4K image and a MAV 
image, where significant differences in scale and view can be 
observed.  
 

   

Figure 2. Examples of 4K image (left) and MAV image (right) 
used in the experiment. 

 

3.2 MAV images orientation 

Image matching was performed with SIFT++ (Vedaldi et al., 
2010), an open source SIFT implementation developed by 
Andrea Vedaldi. The root mean square error of relative 
orientation is 1.158 pixels. Image orientation was performed 
with APERO (Deseilligny et al., 2011), an open source software 
developed by IGN. Even though GPS/INS information of all the 
17 MAV images is available, we only utilized 9 GPS positions 
as a simulation for GPS loss. With a threshold Q of 10m, six 
matching pairs with known image coordinates and 3D 
coordinates were filtered and then used as GCPs to geo-
reference the MAV block. Table 2 lists the residuals in X, Y, 
and Z and the re-projection error of each GCP. The average 
error is calculated with the absolute value of each individual 
error. 
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GCP 
Error in 
X (m) 

Error in 
Y (m) 

Error in 
Z (m) 

Re-projection 
error (pixel) 

1 0.001 -0.099 0.476 0.486 
2 0.072 0.119 -0.196 0.240 
3 0.016 0.149 -0.224 0.269 
4 0.084 -0.158 0.411 0.448 
5 -0.023 0.045 -0.287 0.291 
6 -0.150 -0.056 -0.180 0.241 

RMSE 0.077 0.113 0.316 0.344 

Table 2. Residuals and re-projection errors at GCPs. 

 
To compare the accuracy of the proposed method with 
georeferencing by means of GPS/INS orientations, the relative 
MAV block, which was generated from relative orientation in 
previous steps, was also georeferenced with on-board GPS 
position through bundle adjustment. Since our UAV platform 
has been calibrated beforehand, lever arm and misalignment 
angle were both taken into consideration and adjusted during 
bundle adjustment.  
 
The accuracy of orientation was evaluated by residuals at 
selected check points, which were marked manually on 
georeferenced 4K images. The 3D coordinates of check points 
was calculated by forward intersection. Afterwards we marked 
the same check points on MAV images and calculated their 
coordinates using the interior and exterior orientations resulted 
from the proposed method and by means of GPS/INS 
orientations respectively. Residuals at checkpoints using these 
two methods are compared in Table 3. It can be seen that the 
proposed method achieved significantly higher accuracy at 
check points than GPS based direct geo-referencing. It should 
be pointed out that there is a significant difference of ground 
sampling distance (GSD) between the MAV imagery and 
reference imagery, which are 2cm and 10cm respectively. Such 
difference also contributes to the localization error of manually 
marking check points on images. 
 

CP 
Proposed method GPS georeferncing 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 
1 -0.075 -0.166 0.663 0.340 -1.995 2.056 
2 -0.059 -0.321 0.908 0.492 -2.206 2.182 
3 -0.061 -0.263 0.926 0.284 -2.184 2.621 
4 -0.164 0.014 -0.087 0.005 -2.158 1.550 
5 -0.217 -0.336 -0.052 0.450 -2.346 2.123 
6 0.037 -0.256 0.745 0.313 -2.031 2.261 
7 -0.326 -0.172 -0.184 0.070 -2.383 2.015 

RMSE 0.167 0.242 0.623 0.326 2.190 2.136 

Table 3. Comparison of check points residuals between 
proposed method and GPS based georeferncing. 

 
3.3 Point cloud fusion 

Then dense matching of MAV imagery is performed using the 
open-source MicMac software (Pierrot-Deseilligny et al., 2006). 
Figure 3 illustrates a comparison between the orthophotos 
generated from MAV image dataset and 4K image dataset. It 
can be seen that the orthophoto generated from MAV dataset 
has higher resolution and offers richer details than that from 4K 
dataset.  
 

   

Figure 3. Comparison between 4K orthophoto (left) and MAV 
orthophoto (right) of the same area 

The 3D point clouds of MAV dataset and 4K dataset were 
generated from depth maps respectively; then their DSMs were 
accordingly generated. Figure 4 compares the shaded DSMs 
generated from MAV image dataset and 4K image dataset 
respectively. The DSM of MAV dataset has a resolution of 
0.02m while the resolution of 4K DSM is 0.2m. Such advantage 
in resolution contributes to the better visual effect of MAV 
DSM, as is shown in figure 4.  
 

   

Figure 4. Comparison between 4K DSM (left) and MAV DSM 
(right) of the same area 

 
With the proposed method, the 3D point cloud of the MAV 
image dataset has been aligned to the same reference frame as 
that of the 4K image dataset. Then we mixed the two 3D point 
clouds together and generated a fused point cloud, which has a 
larger density in the MAV surveyed area. Afterwards, the fused 
3D point cloud was interpolated using the k-d tree structure 
(Bentley et al., 1975). Figure 5 illustrates the DSM generated 
from the fused 3D point cloud. The middle area was 
reconstructed with a combination of 4K images and MAV 
images while the outer area was generated from 4K images 
only. In this sense, the fused DSM not only retained the original 
information of the 4K images, but also achieved richer 
information in the MAV covered area. 
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Figure 5. DSM generated from fused 3D point cloud 

 
4. CONCLUSION AND OUTLOOK 

In this paper, a method for multi-view and multi-scale aerial 
imagery and DSM fusion has been presented. The implemented 
method enables the direct geo-referencing of MAV image 
datasets by registering to a reference image dataset. The results 
are quite encouraging as it not only achieves good accuracy 
exempt from deploying ground control points, but also reduces 
the dependence on GPS/IMU information. Furthermore, this 
method also takes fully advantage of previously georeferenced 
images acquired by manned aircraft, and once the current MAV 
dataset is georeferenced, it can be used in return as reference 
dataset for further survey tasks, which can be considered as an 
economical and promising way for geo-information updating.  
 
The experiment was carried out offline, however, the method 
also has the potential to realize effective situation awareness in 
real-time. First, this method can achieve fully automatic 
processing without manual interaction. Besides, all possible 
image pairs were taken into consideration for feature matching 
during the experiment, which was quite computationally 
expensive. But once GPS/IMU information is available for 
MAV data, even partly, it can be employed as a priori 
knowledge to estimate overlapping images and thus 
significantly reduce the computation time. Additionally, the 
available GPS/IMU data can also be introduced as the initial 
value in the bundle adjustment and speed up the convergence. 
 
On the other hand, there are also some aspects that need 
improving. For instance, only six points remained after filtering, 
which is inadequate to ensure robustness in further application. 
To deal with the problem, we consider combining other 
registration methods like cross correlation or pattern matching. 
Since correlation method does not require a search over image 
scale, it is generally more efficient than SIFT (Conte, 2009) and 
may help achieve more robust results. Our interest for further 
work also lies in the MAV point cloud based classification. As 
the source images are captured at different flight altitudes, the 
fusion of MAV point cloud and reference point cloud can 
present the scene from different views and provide 
complementary information. Furthermore, the MAV point cloud 
also contains detailed information, which is advantageous for 
classification. Existing point cloud classification methods, 
however, are generally based on geometric 3D-primitives such 
as planes, cylinders, spheres (Lafarge and Mallet, 2012). In our 
future work, we pursue to fully utilize the 3D position and RGB 
information of the geo-referenced and co-registered MAV point 
cloud for classification. With an integration of registered 3D 
position, RGB information as well as 3D-primitives, a higher 
classification accuracy would therefore be expected. 
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