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ABSTRACT 

With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way 
ecologists can map seasonal changes in wetland habitat.  Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) 
UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014.  Using validation data collected in the 
field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in 
their classification of type of dominant vegetation type and percent cover of three plant classes:  submerged aquatic vegetation, floating 
aquatic vegetation, and emergent vegetation.  The UAV imagery was more accurate than available SWOOP imagery for mapping percent 
cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and 
percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system 
< $3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make 
this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands 
throughout a year. 

INTRODUCTION 

Recent advancements in technology have opened up a new source 

for aerial images: unmanned aerial vehicles (UAVs), commonly 

referred to as drones. These systems fly without an onboard 

operator and are controlled remotely from the ground. While best 

known for their large-scale militaristic applications, small drones 

have become popular recreational tools whose only payload is a 

camera.  Recreational UAVs are available in both plane and multi-

rotor format, in an array of sizes and prices. The proliferation of 

the ‘flying camera’ market has permitted lower prices with 

consistent improvement in quality. One of the most important 

additions to UAVs has been live-feeds of video, or first person 

view (FPV), and global positioning systems (GPS). With these 

equipped, operators can view what the camera is recording in real 

time, while having their position maintained and corrected for in 

three-dimensional space.  

Many potential uses of this new technology in the field of ecology 

are being explored, although not all have yet been attempted or 

brought to their full realization, especially for time-sensitive 

research (Rose et al., 2014). Martin et al. (2012) have brought this 

to light, using an artificial study identifying randomly placed and 

randomly covered tennis balls in the hopes that it can provide a 

crucial positive application to conservation. Researchers have 

attempted to quantify the accuracy (e.g. Chabot & Bird, 2013; 

Gómez-Candón et al., 2013) and savings (e.g. Brekenridge et al., 

2012) of a UAV-based mapping approach. Breckenridge et al. 

(2012) have found that using a helicopter-style UAV for 

determining vegetation cover was 45% faster compared to in-field 

identification. In addition to faster surveys, they found no 

difference in vegetation cover interpretation between these 

techniques (Breckenridge et al., 2012), which could be due to the 

higher degree of texture seen in UAV imagery as compared to 

traditional imagery sources like satellites (Laliberte & Rango, 
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2009). An approach with fixed-wing, plane-style UAVs has also 

been used, which yielded highly accurate images (Koh & Wich, 

2012; Chabot & Bird, 2013). Gómez-Candón et al. (2013) used a 

quad-copter to produce imagery suitable for monitoring 

agricultural crops. Moreover, they determined that flight paths 30 

metres above ground only required a few ground-control points to 

maintain spatial accuracy of these images.  

In addition to acquiring high-resolution imagery, UAVs can be 

deployed more often to meet specific research requirements. 

Researchers in Germany were able to accurately assess floor-level 

biodiversity in two forested areas by observing vegetation visible 

through natural or man-made forest canopy gaps (Getzin et al., 

2012). With advances in three-dimensional image creation and 

interpretation, Lucieer et al. (2014) used UAVs to map 

microtopography in Antarctic moss beds to a resolution of 2 cm. 

Vegetation structure in canopies can also be ascertained, and 

combined with the same colour imagery used to create the 3D 

point clouds for better remote sensing of forest vegetation 

(Dandois & Ellis, 2013). Even individual tree heights have been 

quantified with an error of less than 15% at reasonable flight 

heights (Zarco-Tejada et al., 2014). Collecting these types of data 

are next to impossible with traditional large plane or satellite 

platforms and these studies provide a glimpse of the possibilities 

for UAVs to enhance future research. 

The use of UAVs in ecological research is rapidly expanding and 

the capability of these systems can change the way we address 

problems. When it comes to conservation, aerial imagery is a 

prerequisite to creating effective management plans. The 

conventional method, using sensors mounted on planes or 

satellites, can cost tens or hundreds of thousands of dollars 

depending on the region of interest (Anderson & Gaston, 2013). 

As well, it can be difficult to obtain imagery for a specific time of 

interest.  For instance, satellites can only obtain photos on days 

when the image sensor is in line with the study area, and then 

these photos take time to come to market. Air photos require 

detailed planning and can be limited by weather and flight 

regulations. The "ideal" imagery may never be obtained for a 

study site, and consequently researchers and management 

agencies often have to settle for whatever imagery is available. 

For example, the timing of aerial imagery can limit our ability to 

investigate animal movement patterns and habitat use, carry out 

change-detection analyses, and monitor the spread of invasive 

species. Without seasonal imagery to quantify seasonal habitats, 

especially in a dynamic wetland system, it can be difficult to 

improve our management and recovery strategies.  

The purpose of our study is to compare the ability of UAV-

derived imagery and conventional orthophotography to produce 

imagery that permits accurate mapping of wetland vegetation in 

the province of Ontario.  We have chosen to use orthophotos that 

are generally available through the Southwestern Ontario 

Orthophotography Project (SWOOP), in which true colour 

orthophotos are acquired every four years during spring when 

vegetation are in leaf-off conditions. The most up-to-date images 

were acquired during 2010 and are usually available without 

additional cost to university researchers. While many studies have 

assessed the merits of these technologies with respect to object-

based image classification (Laliberte et al., 2011; Laliberte et al., 

2012; Knoth et al., 2013), we present a comparison directly 

between imagery and field measures. We also investigate how 

UAVs are used for enhanced research in ecology and in 

conservation.  

Study Site 

Our study took place in a 90-ha impounded wetland located within 

a larger wetland complex along the northern shore of Lake Erie, 

Ontario (Figure 1).  The owner of the dyked wetland regulates 

water levels within the impounded area to discourage 

establishment of invasive emergent species like the non-native 

Phragmites australis australis and consequently only a few of 

these are found within the impoundment. This is in striking 

contrast to the edge of the impoundment, which is covered with 

this invasive subtype.  Overall, the most common emergent 

vegetation (EM) in this area is cattail (Typha spp.) and swamp 

loosestrife (Decodon verticillatus), along with a variety of floating 

aquatic vegetation (FL) (e.g. Nymphaea odorata, Nymphoides 

peltata) and submerged aquatic vegetation (SAV) (e.g. 

Ultricularia spp., Potamogeton spp.). This diverse and dynamic 

vegetation community provides habitat for many species at risk. 
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Figure 1: Our study took place in an impoundment (stipled) along 

the northern shore of Lake Erie. 

 

MATERIALS AND METHODS 

Image acquisition 

The conventional images used in this study are from SWOOP 

(South-Western Ontario Orthophotography Project, Ontario 

Ministry of Natural Resources). The image acquisition is a joint 

project between governmental agencies and local townships to 

capture spring imagery on a consistent annual basis (the most 

recent, 2010, is used here). The imagery is 20 centimetre 

resolution with 50 centimetre horizontal accuracy.   

The UAV we used in this study was a DJI Phantom 2 Vision+ 

(DJI, Nanshan district, Shenzen, China), which was operated with 

Samsung Galaxy S3 (running Android 4.3 “Jelly Bean”) and the 

DJI Vision application. We kept the remote control at factory 

settings and flew the UAV with both S1 and S2 levers in the 

upright position.  The UAV was operated with the lens in the 90 

degrees position for the duration of the imaging process, and all 

images were acquired from a height of 120 m.  We opted to fly the 

UAV manually rather than use the built-in autopilot system as the 

latter significantly restricted the area that could be imaged. 

Consequently, we were unable to obtain comprehensive coverage 

of the entire dyked impoundment because after changing the 

batteries and re-launching the UAV, it was difficult to ascertain 

where the previous flight path had stopped, and this led to blank 

spots where image acquisition was missed. We set the camera on 

the Phantom 2 Vision+ to take photos every 3 seconds (time lapse 

mode), and set the camera to auto white balance and auto 

exposure with no exposure compensation. Flight speeds were 

maintained between 10 and 15 km/h to allow for sufficient overlap 

in post-processing (i.e. image stitching).  

We began flights at 9:00 a.m. on 8 August 2014 and ended at 

noon.  The UAV was operated from a small grassy patch located 

on the east side of the impoundment.  For safe operation, no one 

was allowed within 30 m during take-off and landing. We 

completed three flights in favourable weather conditions with low 

winds and limited cloud cover, each lasting approximately 22 

minutes in length (battery life was approximately 25 minutes of 

flight time). This provided sufficient coverage for the entire area 

(90 ha), except for the omitted portion as previously described. 

We processed the images in Adobe Photoshop Lightroom 5.0 

(Adobe Systems Incorporated, San Jose, California, USA) using 

the lens-correction algorithm provided by DJI for the Vision 

camera.  We cropped images to squares in order to remove the 

distortion inherent in the 140 degree fisheye Vision+ lens. No 

other modifications were made to the photos.  We then used 

Microsoft ICE (Image Composite Editor; Microsoft Corporation, 

Redmond, Washington, USA) to stitch together the suite of photos 

and used the planar motion 1 option to avoid skewing and 

distortion. This treatment assumes that all of the photos were 

taken at the same angle, but may have differences in orientation or 

height above the ground. The mosaic was visually assessed for 

accuracy stitching before being used in a GIS.  

We manually geo-referenced the stitched image in ArcMap 10.2 

(ESRI, Redlands, California, USA) and imported the available 

SWOOP imagery into ArcMap as a base layer.  At first, we 

attempted to use the GPS coordinates directly from the image 

metadata for geo-referencing, but the accuracy was too low for 

this purpose.  To avoid skewing the perspective, we excluded 

points in the corners of the image and used portions of the mosaic 

that were far from the absolute edges of the stitched images. This 

correction was necessary because of the short distance between 

the camera and the ground, which caused objects towards the 

edges of the frame to be at a slight angle and appear to lean 

outwards and appear longer.  
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Field validation data 

As part of a separate study on habitat use by several species at 

risk, we had conducted vegetation surveys of the impounded 

wetland between 14 July and 14 August 2014.  Using a quadrat 

(2m x 2m), we estimated the percent cover of each of the three 

aquatic vegetation groups (i.e. EM, SAV and FL). Separately, 

each vegetation group was assigned to one of the 6 categories: 0-

10%, 11-20%, 21-40%, 41-60%, 61-80%, 81-100%. If any 

vegetation was present within the quadrat, we determined the 

dominant vegetation as that with the highest cover. In total, we 

collected vegetation information in this way for 176 quadrats. To 

permit statistical comparisons, we converted the data to three 

relative percent cover categories: none, < 50% cover, or > 50% 

cover. When percent cover was recorded as 41-60%, the result 

was counted as >50% if only that class existed, or another species 

of the same class (e.g. Typha and grasses are both emergent) was 

present in another category other than 0-10% so that total cover 

would be over 50%.  

Statistical analyses 

We imported GPS locations from field survey plots into ArcGIS 

10.2. At each field survey site, we identified percent cover for 

each vegetation type (EM, SAV and FL) as well as the dominant 

vegetation for the UAV and SWOOP image. These data were then 

compiled into 3 x 3 matrices to compare percent cover results to 

our field data. 

Matrices were created to compare each imagery source (UAV, 

SWOOP) to the field classification separately for each vegetation 

category (EM, SAV, FL and dominant vegetation). We then 

performed a Fisher’s exact test in R 3.1.2 (R Core Team) to 

complete the analyses. The Fisher’s exact test was used instead of 

a chi-square analysis because there were too few observations in 

some cells (< 5) and it provides a more robust analysis (Fisher 

1964). 

 

 

RESULTS 

We recorded and stitched over 800 images in the Microsoft ICE 

software.  All computations were performed on a Lenovo desktop 

computer (equipped with Windows 7 64-bit, Intel Core i7-4770 

CPU, 12.0 GB RAM, Intel HD Graphics 4600, and a 1TB hard 

drive), and the entire process took approximately 6-8 hours to 

create a TIFF file (4.02 GB).   Based on 6 ground control points, 

the total root mean square error for the completed image was 

below 5.0, and visual observations confirmed a good fit of the 

UAV-acquired image to the SWOOP dataset. Once geo-rectified, 

the image had a resolution of less than 8.0 cm/pixel as defined in 

ArcGIS (Figure 2).  

 
Figure 2:  a) Photo of the 2010 SWOOP image alone.  b) Photo 

showing the UAV-acquired mosaic image on top of the 2010 
SWOOP image. The red line indicates the boundary of the 

impoundment. 

 

We determined that percent cover of SAV was accurately 

classified with the UAV imagery (p = <0.001; Table 3), whereas 

this was not possible with the SWOOP imagery (p = 1.0; Table 4). 

The UAV imagery was also able to accurately discern percent 

cover of FL (p < 0.001); by contrast, no FL could be identified in 

this category in the orthophoto imagery (see Figure 5). The UAV 

and SWOOP imagery were both able to accurately determine 

percent cover of EM (p < 0.001, Table 6; p = 0.0023, Table 7, 

respectively) and determine dominant wetland vegetation (p < 

0.001 for both). 
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Table 3: A 3 x 3 matrix comparing the UAV classifications to the 
field classifications for percent cover of submerged aquatic 

vegetation (p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: A 3 x 3 matrix comparing the SWOOP classifications to 
the field classifications for percent cover of submerged aquatic 

vegetation (p = 1.0). 

 

 

 

Table 6:  3 x 3 matrix comparing the UAV classifications to the 
field classifications for percent cover of emergent vegetation (p < 

0.001). 

 

 

Table 7:  3 x 3 matrix comparing the SWOOP classifications to 
the field classifications for percent cover of emergent vegetation 

(p = 0.023). 
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Figure 5: Comparison of a) SWOOP imagery with b) UAV-

acquired imagery. Notice details associated with the floating and 
submersed aquatic vegetation in (b) that is absent in (a). 

 

DISCUSSION 

Habitat mapping is an essential activity for ecologists who are 

interested in studying animal movement patterns and habitat use, 

conducting change-detection analyses, and determining the spread 

of invasive species. Management agencies charged with designing 

and recommending conservation strategies for vital wetland 

habitats and sensitive species rely heavily on habitat mapping. In 

both cases, it is customary nowadays to use the most recently 

available orthophotography or satellite imagery to produce these 

maps in a GIS, unless the research budget can accommodate new 

photos to be acquired concurrently with field surveys.  Often, the 

amount of time between date of aerial-photo acquisition and field 

collection can be relatively long (approximately 5 years in the 

case of our SWOOP imagery).  Where the SWOOP image is 

concerned, the bigger problem is that these photos were taken 

during spring, long before FL and SAV are fully established. This 

makes it very difficult to see SAV, and FL is not present which 

limits analysis (Figure 5). Hence, we found that presence and 

percent cover of both vegetation classes could not be identified 

correctly in the SWOOP photo.  By comparison, presence of the 

senesced emergent vegetation (mostly Typha spp.) is still visible 

during spring in the SWOOP photo, and were therefore more 

accurately identified. Since the timing of acquisition of the UAV-

based imagery was very close to that when field data were 

collected, we observed very accurate identification of all three 

vegetation classes. UAV technology can thus allow researchers to 

acquire aerial images of their study sites at a time in the year that 

is most relevant to their study objectives. When compared to aerial 

imagery acquired by mounting cameras on an airplane, the UAV 

is also much more cost-effective. While up to $5,000 CAD would 

be required to map even a small area by plane, the DJI Phantom 2 

Vision+, with extra batteries, case, and a tablet or phone for 

viewing, would cost less than $3,000 CAD. In addition, once 

purchased, the UAV can be flown multiple times at different sites 

and times for minimal maintenance costs (spare propellers, the 

most frequently broken part, can be obtained for $5 each).  

For a wetland of this size (approximately 90 ha), it would take six 

to eight days for all of the field work to be completed to generate a 

habitat map.  By comparison, acquiring images with the UAV 

only took 3 hours. With the addition of computer processing and 

manual geo-rectification, the complete process takes less than two 

days to complete. We attempted automatic geo-rectification to 

reduce the time required, but the GPS accuracy on the DJI 

Phantom 2 Vision+ was too low for this purpose.  Recently, 

Pix4D have released an Android application to improve mapping 

and geo-rectification called Pix4DMapper (Pix4D, Xuhui District, 

Shanghai, China), but it requires the use of their own software and 

can only map relatively small areas at one time (maximum 200 m 

by 120 m; 2.4 hectares) compared to manual flight (with sufficient 

overlap, approximately 20 hectares). In total, using autopilot 

would have garnered less than 20% of the area. As the technology 

develops, automatic geo-rectification will probably become 

possible for larger mapping expeditions.  

In November 2014, Transport Canada created new rules for flying 

UAVs such as the quad-copter used in this study. UAVs used for 

research or commercial purposes cannot be flown at heights above 

90 m without a Special Flight Operations Certificate (SFOC), and 

any observers not part of the research/commercial team must 

remain at least 30 m from the take-off and landing zone. Neither 

of these would have had a large effect on our study, as the reduced 

flight ceiling would have merely increased resolution and slightly 

increased flight times, and we ensured observers were not in the 

vicinity of our take-off or landing zone. 

 

CONCLUSION 

The flexibility of UAVs for research and monitoring will 

revolutionize the way we address and solve ecological problems. 
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The resulting high-accuracy imagery and derived data will permit 

the investigators to ask questions previously limited by traditional 

imaging technologies. We confirmed that the UAV-acquired 

imagery could be used to accurately estimate the percent cover of 

three broad classes of wetland vegetation (submerged aquatic 

vegetation, floating aquatic vegetation, and emergent vegetation).  

By comparison, imagery from SWOOP was unable to accurately 

determine percent cover for submerged and floating aquatic 

vegetation, which comprise a large portion of the study site in the 

summer season.  

As demonstrated, the timing of aerial imagery acquisition can 

limit the extent of our research. Seasonal imagery can greatly 

improve our mapping of dynamic wetland ecosystems and allow 

managers to develop more effective recovery strategies for species 

at risk. Acquiring images multiple times during a single season 

would have been prohibitively expensive with traditional large 

plane or satellite platforms, but with low-cost UAVs, this is no 

longer an obstacle.  Researchers no longer need to use 

commercially available imagery that are out-of-date or taken at the 

wrong season, and instead, learn to create their own.  We hope 

that this study will affirm the use of UAVs in ecological research 

while encouraging more research into this emerging and 

inexpensive remote sensing platform.   
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