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ABSTRACT: 

In this paper, we proposed a new refinement procedure for the semi-global dense image matching. In order to remove outliers and 

improve the disparity image derived from the semi-global algorithm, both the local smoothness constraint and point cloud segments 

are utilized. Compared with current refinement technique, which usually assumes the correspondences between planar surfaces and 

2D image segments, our proposed approach can effectively deal with object with both planar and curved surfaces. Meanwhile, since 

3D point clouds contain more precise geometric information regarding to the reconstructed objects, the planar surfaces identified in 

our approach can be more accurate. In order to illustrate the feasibility of our approach, several experimental tests are conducted on 

both Middlebury test and real UAV-image datasets. The results demonstrate that our approach has a good performance on improving 

the quality of the derived dense image-based point cloud. 

 

1. INTRODUCTION 

The availability of high-accuracy dense point clouds is of 

increasing importance for scientists and researchers interested in 

3D reconstruction of the environment. In general, 3D 

reconstruction can be achieved through either passive or active 

remote sensing systems. Active systems, which could directly 

capture precise, and reliable 3D measurements of objects, has 

become a standard source for 3D reconstruction in current 

applications. However, the utilization of such technique usually 

requires significant initial investment for the acquisition of active 

sensors, especially when seeking high level of reconstruction 

accuracy. Therefore, passive remote sensing systems, which 

commonly use digital frame cameras, are still the most complete, 

economical, flexible, widely used 3D reconstruction option 

(Remondino and El-Hakim, 2006).  

 

In conventional photogrammetric research communities, 3D 

reconstruction from digital images captured by passive sensors 

requires the knowledge of the Interior Orientation Parameters 

(IOP) of the utilized camera, the Exterior Orientation Parameters 

(EOP) of the involved images, and the corresponding 

points/features in the set of overlapping images. The IOP of the 

utilized camera can be derived from a camera calibration process. 

The EOP of the involved imagery can be either derived through 

an indirect geo-referencing procedure using tie and control points 

or a direct geo-referencing process through the implementation 

of a GNSS/INS unit on-board the mapping platform. While the 

latter approach provides practical convenience in terms of 

simplifying the geo-referencing process, it requires significant 

initial investment for the acquisition of the high-end GNSS/INS 

Position and Orientation System (POS) – especially, when 

seeking high level of reconstruction accuracy. Instead of using 

the conventional photogrammetric reconstruction technique, lots 
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of research efforts have been exerted towards the Unmanned 

Aerial Vehicle (UAV)-based 3D reconstruction. In these 

research, the utilization of Structure from Motion (SfM) 

approach and dense image matching technique has been 

investigated. To be specific, the SfM approach, which is initiated 

by the computer vision research communities, automates the 

process of EOP recovery. The dense image matching technique 

provides pixel-based matching results. Compared to the 

conventional photogrammetric approach, current UAV-based 3D 

reconstruction is more advantageous, since it allows for 3D dense 

point cloud generation in the absence of GNSS/INS units. 

 

It is important to note that although state-of-the-art dense image 

matching technique provides accurate pixel-wise matching 

results, the resulting disparity image, which encodes the x-

parallax at each pixel, can still contain some errors. Therefore, 

this research is dealing with a new disparity refinement procedure 

for the UAV-image-based dense point cloud generation. More 

specifically, the local smoothness constraint and point cloud 

segments are utilized to improve the disparity image that are 

derived from dense image matching.  The remainder of the paper 

presents the proposed approach in more details. First, a literature 

review of related work is given. Then, the proposed methodology 

is introduced. Afterwards, experimental results are discussed. 

Finally, the drawn conclusions and recommendations for future 

work are presented. 

 

 

2. RELATED WORK 

Current dense image matching algorithms can provide matching 

results for each image pixel. A detailed comparison of dense 

image matching algorithms has been conducted by Scharstein 

and Szeliski (2002). In their paper, the dense image matching 
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algorithms are assumed to be composed of four steps. These four 

steps includes matching cost computation, cost aggregation, 

disparity optimization, and disparity refinement. Then, existing 

algorithms are classified into different categories as modification 

in one or more steps. 

 

Among the above-mentioned four steps in dense image matching, 

the improvement of disparity optimization attracts great interest 

from researchers. As far as the disparity optimization is 

concerned, two different approaches can be adopted. In the first 

approach, a local disparity optimization is applied, where best 

matching pixels are usually found using a Winner-takes-all 

(WTA) strategy. However, WTA fails in image matching with 

uniform areas. Alternatively, the latest dense image matching 

techniques usually adopt a 2-dimensional (either global or semi-

global) approach for the disparity optimization. For global dense 

image matching, several powerful global optimization methods 

have been adopted. For example, Dynamic Programming 

(Forstmann et al., 2004), Graph-Cut-based (Boykov et al., 2001) 

and Belief-Propagation-based (Sun et al., 2003) approaches are 

three most widely used global optimization methods. However, 

all these approaches are quite computationally expensive. The 

semi-global dense matching algorithm (Hirschmuller, 2005, 

2008) is a relatively new stereo dense image matching technique. 

It minimizes the image matching costs along several 1D 

directions through the image, and offers a very good trade-off 

between matching accuracy and computational-efficiency. 

Therefore, several research efforts have been conducted on the 

semi-global dense matching algorithm. Gerke in 2009 

demonstrated the power of semi-global dense image matching 

when using oblique aerial images of urban scenes. Hirschmüller 

and Bucher in 2010 compared the digital surface models (DSMs) 

derived from the semi-global dense matching algorithm with 

DSMs from a laser model and ground control points (GCPs). 

They concluded that very precise DSMs can be derived from 

dense image matching, especially using datasets with sufficient 

image overlap. Some other researchers (Gehrke et al., 2010; 

Geiger et al., 2011) also demonstrated that semi-global dense 

matching algorithm has superior performance when compared to 

other matching methods and laser scanning systems. These 

research efforts demonstrate that the semi-global dense matching 

method is useful for solving various practical problems that 

require high density surface models. 

 

As stated above, matching results derived from different 

algorithms can still contain some errors. In order to remove these 

outliers, additional geometric constraints are usually enforced in 

the matching algorithm to refine the obtained disparity values. 

For example, one commonly used assumption is that the object 

surfaces are piece-wise planar. In order to model such 

assumption, several methods (Wang and Zheng, 2008; 

Humenberger et al., 2010) take advantage of color-based image 

segmentation, and enforce plane representation in each image 

segment. However, the main disadvantage of these methods is 

that the obtained image segments do not always correspond to a 

planar surface in real world. 

 

 

3. METHODOLOGY 

In this paper, a new disparity refinement procedure is proposed 

for the improvement of dense UAV-image-based point cloud 

generation. Figure 1 illustrates the workflow of the proposed 

procedure. First, a Structure-from-Motion (SfM) approach 

developed by He and Habib (2014) is adopted for the estimation 

of image EOPs. Then, the semi-global dense image matching 

algorithm is implemented for dense point cloud generation. 

Afterwards, local smoothness constraint and point cloud 

segments are utilized to improve the disparity image that are 

derived from the semi-global dense image matching. Finally, 

correspondence tracking and spatial intersection are applied to 

generate dense image-based point cloud using the refined 

disparity images. 

 
Figure 1. The workflow of the proposed UAV-image-based 

dense point cloud generation process  

3.1 Structure from Motion 

Image-based point cloud generation requires the availability of 

accurate IOPs of the utilized camera, the EOPs of the involved 

images, and the corresponding pixels/features in the set of 

overlapping images. The IOPs of the utilized camera can be 

derived from a camera calibration process. In order to derive the 

EOPs of the involved images, the SfM approach, which 

automates feature matching and EOP recovery, is adopted. The 

utilized SfM approach is developed by He and Habib (2014), and 

it is based on a three-step strategy for the recovery of the image 

EOPs. In the first step, the relative orientation parameters (ROPs) 

relating stereo-images are initially computed from the 

automatically identified SIFT features. In the second step, a local 

reference coordinate frame is first established. Then, the EOPs of 

the remaining images are sequentially recovered through an 

incremental augmentation process. Finally, in the third step, a 

bundle adjustment process is carried out to refine the derived 

information in the second step. 

 

3.2 Semi-global Image Matching 

From camera calibration and the utilized SfM approach, we can 

derive the IOPs of the camera and the EOPs of the involved 

images. Then, the epipolar geometry within the available image 

stereo-pairs can be reconstructed. The benefit of the epipolar 

geometry is that the search for corresponding points need not 

cover the whole image plane, but rather can be restricted to the 

epipolar line. Such epipolar geometry enables a much easier 

process for dense image matching. In this paper, the semi-global 

dense matching algorithm, which searches the matching pixels 

along the epipolar line, is implemented. 

 

Different from other dense image matching algorithms, the novel 

idea of the semi-global dense matching is that the optimization 

of disparity values is achieved through a semi-global approach. 

As shown in Figure 2, the semi-global image matching minimizes 

the global energy along several 1D directions (horizontal, vertical, 

and diagonal) through the image. The minimum cost path 

𝐿𝑟(𝑥, 𝑦, 𝑑) of pixel (𝑥, 𝑦) at disparity d along direction r (see 

Figure 2b) is defined recursively as in Equation 1. 

Structure from Motion 

Semi-global Image Matching 

Refinement of Disparity Image 

Correspondence Tracking and Spatial 

Intersection 
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𝐿𝑟(𝑥, 𝑦, 𝑑) = 𝐶(𝑥, 𝑦, 𝑑) + min⁡(𝐿𝑟(𝑥
′, 𝑦′, 𝑑), 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿𝑟(𝑥
′, 𝑦′, 𝑑 − 1) + 𝑃1, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿𝑟(𝑥
′, 𝑦′, 𝑑 + 1) + 𝑃1, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡min⁡(𝐿𝑟(𝑥
′, 𝑦′, 𝑖)) + 𝑃2)⁡ 

 

 

(1) 

 

In this equation, pixel (𝑥′, 𝑦′) is the neighbouring pixel of pixel 

(𝑥, 𝑦) along direction r. 𝐶(𝑥, 𝑦, 𝑑) represents the matching cost 

of pixel (𝑥, 𝑦) at disparity d. P1 and P2 are two constant penalty 

values used to enforce the smoothness constraint among 

neighbouring pixels. In the semi-global optimization, small 

penalty P1 is added if the disparity change of the neighbouring 

pixels is relatively small (i.e., one pixel), and large penalty P2 is 

added if the disparities differ by more than one pixel within the 

neighbourhood. Once the minimum cost path is determined at 

each direction, the aggregated costs S can be derived by summing 

up all the minimum cost paths in all directions (see Equation 2). 

Then, for each pixel, the disparity with the lowest aggregated 

costs S can be selected as the initial disparity. As a result, semi-

global dense matching optimizes the disparity value at each pixel 

with the optimal paths through the whole image. 

 

S(𝑥, 𝑦, 𝑑) =∑𝐿𝑟(𝑥, 𝑦, 𝑑)

𝑟

 
 

(2) 

 

 
Figure 2. (a) Semi-global optimization, and (b) Minimum cost 

path 

3.3 Refinement of Disparity Image 

Although the semi-global dense matching algorithm provides 

accurate pixel-wise matching results, the resulting disparity 

image, which encodes the x-parallax at each pixel, can still 

contain some errors. In this paper, the local smoothness 

constraint and point cloud segments are utilized to improve the 

disparity image derived from the semi-global algorithm. Before 

introducing the proposed methods, the disparity-to-spatial 

relationship, which is the basis of the local-smoothness-

constraint-based and the image-segments-based methods, is 

presented. 

 

3.3.1 Disparity-to-spatial relationship for planar objects 

 

As shown in Figure 3, Π is a piece of planar surface in the object 

space, and it can be modelled as a plane. Therefore, the 

mathematical model of planar surface Π  can be defined in 

Equation 3. 

 

𝐴𝑋 + 𝐵𝑌 + 𝐶𝑍 + 𝐷 = 0 (3) 

 

Where (𝐴, 𝐵, 𝐶)  is the unit normal vector of the plane and 

coefficient 𝐷 represents the distance from the origin of the local 

frame to the plane. Using simple algebraic manipulation, it is 

easy to prove that the corresponding disparity model Δ of surface 

Π  in the disparity image is linear, and the equation of the 

corresponding disparity model Δ can be also defined by the plane 

in Equation 4. 

 

𝛼𝑥 + 𝛽𝑦 + 𝛾𝑑 + 𝛿 = 0 
 

(4) 

Where (x, y) is an image projection from point P; d is the disparity 

value at image point (x, y), and 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑⁡𝛿 are the coefficients 

of the disparity plane. In addition, if the baseline length of the 

stereo-pair is L, and the focal length of the normalized stereo-

image is f, the mapping between the object surface and the 

disparity plane can be established as Equation 5. 

 

{
 
 

 
 𝛼 = 𝐴𝐿 

𝛽 = 𝐵𝐿 

𝛾 = 𝐷   
𝛿 = 𝐶𝑓𝐿

 

 

 

(5) 

 

 

 
Figure 3. Disparity-to-spatial relationship for planar objects 

3.3.2 Refinement Using Smoothness Constraint 

 

In practice, it is common to assume that the object surface is 

piece-wise smooth. Considering the relationship between the 

planar object and the disparity plane, which was previously 

explained, it is also reasonable to assume that the resulting 

disparity field corresponding to the object surface is piece-wise 

smooth. In this context, the local smoothness constraint, which 

assumes the local smoothness in the disparity image, can be 

enforced to eliminate the outliers in the disparity image. The 

proposed method of the local smoothness constraint can be 

achieved in two steps. 

 

In the first step, the disparity-based normal vector is estimated at 

each pixel in the disparity image. In the disparity image, a local 

window is first used to define the surrounding neighbourhood at 

each pixel. Then, the disparity-based normal vector of the pixel 

cantered at the pre-defined local window is estimated through an 

eigenvalue analysis (Lari and Habib, 2013). In the second step, a 

local disparity-normal-vector-based analysis is carried out to 

eliminate the outliers in the disparity image. A smoothness 

threshold ( 𝜃𝑡 ) in terms of the angle among the estimated 

disparity-based normal vectors within the local window is first 

defined. Then, to eliminate outliers, the sum of the dot product of 

two normal vectors is computed. 

 

∑‖𝑛𝑝 ∙ 𝑛𝑞𝑖‖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑁

𝑖=0

 

 

(7) 

 

Where 𝑛𝑝 is the disparity-based normal vector of central pixel 𝑝, 

and 𝑛𝑞𝑖  is the disparity-based normal vector of neighbouring 

pixel 𝑞𝑖 . Thus, if  ∑ ‖𝑛𝑝 ∙ 𝑛𝑞𝑖‖
𝑁
𝑖=0 < 𝑀 ∙ 𝑁 cos(𝜃𝑡) , where M 

and N are the size of the predefined local window, we consider 

central pixel 𝑝 to comply with the local smoothness constraint, 

and it can be kept as a valid pixel in the disparity image; 

otherwise, pixel 𝑝 is labelled as an outlier, and eliminated from 

the disparity image. 

 

  

X 

Y 
P 

(a) 

x 

y 

d 

DSI 

(x,y,d) 

Minimum cost 

path 𝐿𝑟(𝑥, 𝑦, 𝑑)  

Direction r 
(b) 

  

Π:𝐴𝑋 + 𝐵𝑌 + 𝐶𝑍 + 𝐷 = 0 

Δ: 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑑 + 𝛿 = 0 𝑂 

(𝑥, 𝑦, 𝑑) 

(𝑋, 𝑌, 𝑍) 𝑃 
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3.3.3 Refinement Using Point Cloud Segments 

 

The second approach for disparity refinement assumes 

correspondences between the point cloud segments and the 

planar surfaces in the object space. Instead of using 2D-image 

segmentation algorithms, such as Mean Shift Segmentation, we 

identified planar surfaces from the given point cloud (e.g., either 

the derived sparse point cloud from SfM approach or derived 

point cloud from initial semi-global dense matching) through a 

3D point cloud segmentation. In this paper, the adopted point 

cloud segmentation is developed by (Lari et al., 2011).  Since 3D 

point clouds include more geometric information regarding the 

reconstructed objects, segments derived from point cloud 

segmentation are more accurate. Then, the boundary of the 

identified planar segments are back-projected onto 

corresponding images. Finally, a plane fitting within the disparity 

space similar to the one suggested by Wang and Zheng (2008), is 

applied within each back-projected segment to refine the 

obtained disparity values.  

 

3.4 Correspondences Tracking and Spatial Intersection 

Once the refined disparity image is obtained, correspondences 

tracking and multiple light ray intersection are carried out for 

dense point cloud generation. Two filters are incorporated in the 

multiple light ray intersection process. The first filter is used to 

remove blunders or outliers. In this research, if the average image 

residuals obtained from the spatial intersection are larger than a 

certain threshold, the image points are discarded as blunders. The 

second filter is used to remove the points with low intersection 

precision. In this research, the second filter is implemented by 

ensuring that a tracked point should appear in at least three 

images. 

 

4. EXPERIMENTAL RESULTS 

To illustrate the feasibility of the proposed procedure, we 

conducted several tests on both Middlebury and real-world image 

datasets. 

 

4.1 Middleburry Dataset 

The Middlebury dataset provides benchmarking images for the 

evaluation of stereo matching algorithms. In the experimental test, 

the derived disparity image is compared with the ground truth. In 

order to identify the planar surfaces in object space, we utilized 

the derived point cloud from initial semi-global dense matching 

for point cloud segmentation. Table 1 shows the achieved 

improvement on semi-global dense matching. Figure 4 illustrates 

the derived disparity images from the proposed approach.  

 

Table 1. The percentage of correctly matched pixels of the 

implemented semi-global dense matching (SGM) before and 

after applying the proposed refinement 

SGM SGM + Refinement 

87.1% 90.3% 

 

 
Figure 4. Middlebury Tsukuba Dataset: (a) original left image, 

(b) disparity image from the implemented semi-global dense 

matching and (c) disparity image after applying the proposed 

refinement. 

 

4.2 Real Dataset 

The Middlebury dataset gives a good idea of the matching quality 

compared with the ground truth data. However, these image are 

created under very well controlled conditions, which is almost 

impossible in the real-world data collection. Therefore, the 

performance of the proposed approach is evaluated on a real 

UAV image dataset. The utilized UAV images were captured by 

a DJI Phantom 2 UAV with a GoPro 3 camera. The GoPro 

camera has been calibrated (He and Habib, 2015), and the 

normalized UAV images are generated for dense image 

matching. Figure 5 illustrates a sample of the derived disparity 

image on the UAV image dataset. Meanwhile, the UAV-image-

based dense point cloud is generated on this dataset. The derived 

point cloud is shown in Figure 6. In order to compare the 

reconstructed dense point clouds before and after applying the 

proposed approach, profiles across the dense point clouds are 

generated and displayed in Figure 7. From these results, we can 

note that the derived disparity images are effectively improved 

by applying the proposed approach. 

(a) 

(b) 

(c) 
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Figure 5. Result from the UAV-image dataset: (a) original left 

image, (b) original right image, (c) normalized left image, (d) 

normalized right image, (e) disparity image derived from the 

implemented semi-global dense matching, and (d) refined 

disparity image by applying the proposed approach, the 

improved area is highlighted with the red circle. 

 
Figure 6. Dense image-based point cloud derived from the UAV 

image dataset after applying the proposed disparity refinement 

 
Figure 7. A profile of the reconstructed dense point cloud before 

(red color) and after (green color) applying the proposed 

disparity refinement 

 

5. CONCLUSIONS AND RECOMMENDATISONS FOR 

FUTURE WORK 

5.1 Conclusions 

In this paper, we proposed a new refinement procedure for the 

semi-global dense matching algorithm. The experimental results 

demonstrate that the proposed approach has the following 

characteristics: 

1. Both smoothness constraint and point cloud segments are 

utilized for the refinement of disparity images. A 

combination of these two different approaches can 

effectively deal with real scenes containing both planar and 

curved surfaces. 

2. Compared with the refinement using image-based segments, 

segments derived from 3D point clouds are more accurate, 

since 3D point clouds include more precise geometric 

information regarding the reconstructed objects. 

 

5.2 Recommendations for Future Work 

It is important to note that the proposed approach is just a 

successive refinement on the derived disparity images. However, 

it is much better to incorporate these planar constraints (both 

smoothness and segment-based constraints) into the disparity 

optimization process. For future work, enforcing planar 

constraints at the disparity optimization process will be 

investigated. 
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