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ABSTRACT: 
 
Along with the advancement of unmanned aerial vehicles (UAVs), improvement of high-resolution cameras and development of 
vision-based mapping techniques, unmanned aerial imagery has become a matter of remarkable interest among researchers and 
industries. These images have the potential to provide data with unprecedented spatial and temporal resolution for three-dimensional 
(3D) modelling. In this paper, we present our theoretical and technical experiments regarding the development, implementation and 
evaluation of a UAV-based photogrammetric system for precise 3D modelling. This system was preliminarily evaluated for the 
application of gravel-pit surveying. The hardware of the system includes an electric powered helicopter, a 16-megapixels visible 
camera and inertial navigation system. The software of the system consists of the in-house programs built for sensor calibration, 
platform calibration, system integration and flight planning. It also includes the algorithms developed for structure from motion 
(SfM) computation including sparse matching, motion estimation, bundle adjustment and dense matching. 
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1. INTRODUCTION 

1.1 UAV-based 3D Modelling 

Recently, low-altitude imagery has become a matter of 
remarkable interest among researchers in both photogrammetry 
and computer-vision communities. The 3D models generated 
from UAV imagery can serve various applications ranging from 
natural resource management to civil engineering (Shahbazi et 
al., 2014; Liu et al., 2014). In spite of the advantages introduced 
by UAVs and despite the commercial and open-source efforts, 
unmanned mapping systems are still requiring investigations 
and considerations in terms of efficient data processing. There 
are basic differences between the features of unmanned aerial 
systems and those of traditional aerial systems, which cause 
challenging issues in the procedure of SfM computation and 3D 
modelling. These features are briefly discussed in this section. 
 
Small-format cameras cover only a small area per image. 
Therefore, in most of the applications, mosaicking is required. 
In order to provide geospatially valid mosaics, accurate geo-
referencing is mandatory too. To this end, two different 
methods might be applied; first direct geo-referencing via 
navigation sensors, second indirect exterior orientation (EO) 
estimation via image observations and subsequent geo-
referencing via ground control points (GCPs). The accuracy of 
direct geo-referencing is mainly influenced by the accuracy of 
the navigation sensors and the platform calibration (Turner et 
al., 2014). On the other hand, the accuracy of indirect geo-
referencing is affected by the positioning accuracy of GCPs and 
the accuracy of tie-point detection among overlapping images, 
namely sparse matching (Turner et al., 2012). 
 
Despite the advantages of consumer-grade cameras in terms of 
price, weight and resolution, yet, their unstable lens and sensor 
mounts put noticeable concern in precise 3D modelling. 

Therefore, internal camera calibration must be performed. 
When requiring metric accuracies, offline calibration of the 
camera is suggested (Remondino and Fraser, 2006). However, 
on-the-mission vibrations can affect the calibration parameters 
of the camera to some extent (Rieke-Zapp et al., 2009). 
Therefore, the offline calibration performed in laboratory may 
no longer be valid on the flight campaign. A solution to this 
problem is to calibrate the camera by adding the systematic 
error terms to the block bundle adjustment (BBA), namely self-
calibration.  
 
The solutions and software packages, which are developed for 
different stages of SfM computation, must deal with specific 
features of unmanned aerial images. The most distinctive 
characteristics of UAV images are: i) large perspective 
distortion and scale changes due to oblique photography and 
low flight altitude in comparison with terrain relief, ii) high 
matching error due to uneven distribution of feature points, 
motion blur, occlusion or foreground motion of the features and 
noticeable radiometric changes (Zhang et al., 2011; Haala et al., 
2013). Several studies have been performed in recent years to 
assess the performance of UAVs in 3D modelling applications. 
Valuable reviews of such studies can be found in Colomina and 
Molina (2014) and Nex and Remondino (2014). 
 
1.2 Open-Pit Mine Modelling  

Since the main application of the system studied in this paper is 
gravel-pit surveying, the main problematic which justifies the 
necessity of developing new mapping technologies for gravel 
pits is discussed in this section. In general, gravel mining 
impacts the surrounding environment in many ways, and those 
impacts must be monitored frequently. Ground subsidence, 
landslide and slope instability are the most dangerous issues at 
gravel pits, especially considering the lubricious nature of 
gravel (Herrera et al., 2010). Previous studies on geotechnical 
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risk assessment have shown that the topographic data must 
provide a ground resolution of one to three centimetres in order 
to predict such events (Ivory, 2012; Francioni et al., 2014). 
 
Furthermore, mine managers have to report the amount of 
extracted mass, left over tailing dumps and waste materials on a 
regular basis according to governmental regulations. Therefore, 
volumetric change measurement within a gravel pit is 
mandatory. The map-scale required for volumetric 
measurement in earthworks is usually between 1:4,000 and 
1:10,000 (Patikova, 2004). Given an imaging sensor with 10 μm 
pixels, the ground resolution must be between 4 to 10 
centimetres per pixel to provide such a scale range.  
 
Regarding the above-mentioned arguments, mapping and 
monitoring of a gravel pit requires high-quality topographic and 
visual data. Considering the required spatial and temporal 
resolution, coverage area, speed of measurement, and safety 
criteria, UAVs can be better solutions for gravel-pit mapping in 
comparison with manned aerial systems or land surveying 
techniques. Therefore, open-pit mine mapping is slowly 
becoming a practical application of UAVs (McLeod et al., 
2013; Hugenholtz et al., 2014). 
 
1.3 Article Structure and Contributions 

Considering the arguments given above, the structure of this 
paper is divided into two principal parts: data acquisition and 
data processing. In the first part of the paper, we are aiming to 
discuss and address the main issues regarding the equipment, 
sensor calibration, platform calibration and system integration. 
Several aspects of these tasks are discussed in Section 2, and 
the intermediate experimental results for each particular task are 
presented as well. Then, our experiments for fieldwork planning 
and data acquisition as well as their results are presented in 
Section 3. 
 
In the second part of the paper, we present our algorithms for 
SfM computation (Section 4) and their corresponding results 
(Section 5). These algorithms bring up the following 
contributions. Firstly, a new method, mainly based on genetic 
algorithm, is proposed for robust sparse matching and motion 
estimation. It provides several advantages in comparison with 
the existing algorithms in the state-of-the-art including the 
improved computational efficiency and robustness against 
degeneracy, poor camera motion models and noise. Secondly, 
several BBA strategies are assessed, and a new strategy is 
proposed in order to control the effects of on-the-job, self-
calibration on the accuracy of other outputs. Finally, a dense 
matching algorithm based on the intrinsic-curves theory is 
proposed, which is a matching strategy independent of the 
spatial space. The advantage of this algorithm is that the 
computational efficiency of matching would not change, 
regardless of the irregularity of the disparity map. Besides, the 
application of intrinsic curves causes the matching to be robust 
against occlusions. 
 

2. UNMANNED AERIAL SYSTEM DEVELOPMENT 

2.1 Platform, Sensors and Processor 

The platform used in this project is a helicopter, called 
Responder, which is built by ING Robotic Aviation1. This 
platform is powered by electricity with operational endurance 

                                                                 
1 www.ingrobotic.com 

of approximately 40 minutes. It provides up to 12 kilograms 
payload capacity, which is more than adequate for our sensors 
and processor weighing less than 3.5 kilograms. Figure 1 
presents the platform and its on-board elements.  
 
Two digital cameras were tested in this study, Prosilica 
GE4900C visible camera and Prosilica GT1920C high-frame-
rate camera. While both cameras provide high-resolution data, 
the GT1920C has the advantage of providing 40 frames per 
second at full resolution. However, the main disadvantage of 
this camera is the small-size sensor, which makes the 3D 
modelling process more difficult. Since better results in terms 
of accuracy and efficiency have been obtained via GE4900C, 
only this camera will be further discussed. This camera has an 
approximate sensor size of 36x24 mm, and a 35 mm, F-
adjustable lens was set with it. 
 
The navigation sensor used in this project is an industrial-grade, 
GPS-aided inertial navigation system (INS), MIDGII from 
Microbotics Inc2. Theoretically, the unit measures pitch and roll 
with 0.4 degree and heading (yaw) with 1-2 degrees of 
accuracy. The position accuracy is approximately 2-5 meters. 
 
The computer used in this project is an ultra-small, single-board 
system, which is based on 1.7GHz Intel Core™ i7 processor. 
SATA III ports for on-the-flight, external storage purposes, 
Gigabit Ethernet ports for connecting the camera, USB port for 
connecting the INS and wireless adaptor for remote control are 
among the required features of the board. We stacked the board 
together with a 108 Watt power supply, which receives 
electricity from the battery pack and distributes regulated DC 
voltage to the processing unit and other sensors. With this 
configuration, the embedded system is capable of acquiring, 
logging, and storing data during almost 70 minutes. 

a 

b c 
Figure 1. The aerial system, a) platform, b) sensors, c) computer 
 
2.2 System Integration 

The control subsystem in the UAV photogrammetric system is 
responsible for several tasks, including power control, 
controlling the data acquisition parameters, data logging, data 
storage, and time synchronization. The brief integration scheme 
developed in this project is illustrated in Figure 2. To create 
these controllers, an object-oriented, cross-platform C++ 
program is developed. The software solution contains three 
main classes: INS, Camera, and Clock. The Clock controller is 
responsible to record the accurate time of all the events (camera 
exposure-end and INS message reception) via the system-wide, 
real-time clock. The functions of INS class are responsible for 

                                                                 
2 www.microboticsinc.com 
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communicating with the INS, receiving the high-frequency 
data, parse them and log them. The GPS-time of INS messages 
is also assigned to a static variable communicating with the 
Camera class. The Camera class is responsible for 
communicating with the camera, setting acquisition parameters, 
logging images and geo-tagging each image with the INS 
message received at the exposure-end-event epoch of that 
images. This synchronization is performed via multithreading 
and mutual communication between classes. Our experiments 
showed that the GPS time tagged to any image via the INS is 
only 117 milliseconds delayed from the exact time of the 
exposure-end event. 

 
Figure 2. Integration scheme of the system and its components 

 
2.3 Camera Calibration 

In applications where metric accuracies are required, offline 
camera calibration is suggested (Remondino and Fraser, 2006). 
The network geometry and precise target detection are very 
important factors that affect the camera parameters. Therefore, 
off-line calibration can achieve higher accuracy and precision in 
comparison with on-the-job calibration. The practical steps of 
off-line camera calibration developed in this study include: 

i) deciding the parameters of the calibration model: In addition 
to the internal orientation (IO) parameters (the offsets of the 
camera principal point and the focal length), the Brown's 
additional parameters for digital cameras are applied to model 
the systematic errors (Brown, 1971). The error sources 
considered in this model include radial and tangential lens 
distortions and sensor, in-plane distortions. 
ii) designing and establishing a test-field with signalized 
targets: Two factors, size and depth, must be considered when 
designing the test-field. Size and shape of the targets are also 
other important elements which must be carefully considered in 
order to facilitate very accurate target positioning. The 3D 
coordinates of the targets are accurately measured using a 
spatial station for assessment purposes. The test-field is shown 
in Figure 4(a). 
iii) setting up the camera at different orientations, and 
photographing the test-field: Having various orientations and 
depths are necessary to provide a stable network geometry. This 
way, it can be ensured that the calibration parameters are not 
affected by/dependant to the network geometry (Fraser, 1997).  
iv) detecting and positioning the targets on the images: The 
targets are designed as black and white rings. Thus, once the 
image of the circular target is deformed under any linear 
transformation, it appears as an ellipse. Therefore, a technique 
of ellipse detection based on edge-detection and ellipse fitting is 
developed to position and label the targets very accurately. 
v) performing free-network calibration to calculate the 
parameters and correcting images to restore undistorted images. 
 
The off-line calibration was repeated several times before and 
after various missions. The accuracy of average parameters was 

assessed using check data. To this end, several images were 
captured from the test-fields. Controlled resection using camera 
calibration parameters was performed, and EO parameters of 
the images were determined. For some checkpoints (targets not 
assisted in resection), the 3D ground-coordinates of the targets 
were back-projected to the images, and the residuals from their 
actual positions were measured (Figure 3). The mean and 
standard deviation (StD) of the residuals on the checkpoints at 
x- and y-directions were 0.320.18 and 0.200.16 pixels, 
respectively. The residuals showed how efficiently the 
calibration parameters affected the accuracy of EO. 

 
Figure 3. Residuals on checkpoints after camera calibration 

 
2.4 Platform Calibration 

The navigation and imaging data are measured at different 
coordinate systems. With this regard, the main goal of platform 
calibration is to, first, measure the offset vector between the 
perspective center of the camera and the center of the INS 
body-fixed system (lever-arm); second, to determine the 
rotations of the imaging system axes with respect to the INS 
system (bore-sight angles). Since the INS used in this study is 
utilizing consumer-grade GPS, the positioning accuracy of few 
meters eliminates the need for level-arm calibration.  
 
Normally, platform calibration is essential when direct geo-
referencing of images is considered. However, in this project, 
we are not interested in direct geo-referencing of images, as we 
are looking for higher accuracy levels. Nevertheless, we are still 
looking for the direct EO to be capable of approximately 
positioning the GCPs on images. Then, the rough position of 
GCPs can be refined using image processing techniques. For 
facilitating the platform calibration, we stacked the camera and 
the INS together, in a fixed status (Figure 1(b)). Consequently, 
we could calibrate the platform before installing the sensors on 
the UAV. A test-field with circular targets was established 
(Figure 4(b)), and the targets were accurately measured via the 
spatial station. The spatial station, itself, has been stationed 
using precisely positioned points on the ground. Then, images 
were acquired from the test-field while logging the INS data. 
The EO parameters of the images were calculated via controlled 
space resection, and their comparison with the navigation data 
of INS resulted in the platform calibration parameters.  

a b 
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Figure 4. The test-fields for a) camera calibration, b) platform 
calibration 
 

3. DATA ACQUISITION EXPERIMENTS 

3.1 Planning 

The data for this study was acquired from a gravel pit, located 
at Sherbrooke, QC, Canada. The extent of the mine is shown in 
Figure 5. Two main zones, which were considered for our tests 
are shown by red and green rectangles in Figure 5. The red zone 
represents a part of the gravel pit, which is covered by piles of 
gravel, and the green zone represents the cliffs, where the rock 
is dynamited for extraction. 

 
Figure 5. Study area, the open-pit mine located at Sherbrooke 

 
Planning the fieldwork is an important part of the project. The 
quality of the control and check data as well as the images 
depends highly on this stage. In order to plan the flight itself, 
there are several free software packages (e.g. Mission Planner). 
However, a simple program is developed in this study to satisfy 
our specific needs for both flight and surveying planning. The 
software is able to decide the flight characteristics based on the 
terrain relief, time of flight, drone characteristics, required 
resolution and overlap, as well as camera features. Besides, it 
determines the optimal number and distribution of required 
ground control points, and determines the optimal size for 
designing the targets to indicate GCPs. GCPs were signalized 
using circular targets with binary crosshairs at the centre 
(Figure 6(b)). We used sharp colors, red and yellow, for the 
background to make them be distinguishable from the natural 
objects in the scene. They were also labelled with easily 
recognizable labels, both in terms of size and shape. 
 
3.2 Fieldwork 

The first essential task to start the fieldwork was to initialize the 
GPS base receiver, whose coordinates were required to perform 
real time kinematic positioning. We recorded the base station 
observations for more than 10 hours, and processed them via 
CSRS-PPP service provided by Natural Resources Canada3. 
The position of the base point was determined with 2-5 
millimeters horizontal and 12 millimeters vertical absolute 
accuracy. Afterwards, the next task was to install the targets and 
measure their positions using RTK GPS system. Once the 
image acquisition was terminated, the terrestrial surveying for 
gathering check data was performed. In order to collect the 

                                                                 
3 http://webapp.geod.nrcan.gc.ca/geod/tools-outils 

check data, a Trimble VX Spatial Station was used. The station 
was setup over ground marks whose coordinates were measured 
with the RTK system, and laser scanning was conducted. Figure 
6(a) presents an example of the way the GCPs and scanner 
stations were configured for the cliffs zone. 

a 

 
b 

Figure 6. Fieldwork elements, a) Configuration of GCPs and 
VX scanner stations for the cliffs zone, b) signalized target 
patterns for GCPs 
 
3.3 Preliminary Results 

In order to quickly check the quality of acquired data, the 
images and their geo-logs were processed by the commercial 
photogrammetric software, Pix4D4. The 3D point clouds and 
the aerial mosaics were generated via this software. Afterwards, 
the CloudCompare5 open-source software was applied to 
compare the aerial point clouds with the terrestrial laser point 
clouds. In some cases, image enhancement by pre-processing 
was also applied to improve the results. For instance, to remove 
the effect of shadows at cliffs zone, a shadow-detection and 
removal algorithm based on luminance processing was used.  
 
Figure 7 visualizes the aerial mosaic (with average ground 
resolution of 1.3 cm) and 3D point cloud from the cliff zone. 
Figure 8 represents the comparison between the laser point 
cloud and the image-based one, in terms of the distance 
between two clouds. The average horizontal distance between 
the aerial and the laser point clouds was 3.29 cm, and the 
average vertical distance between them was 2.04 cm. 

a 

b 
Figure 7. Visualization of the preliminary 3D products from the 
developed unmanned aerial system, a) mosaic, b) point cloud 

                                                                 
4 www.pix4d.com  
5 www.cloudcompare.org 
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Figure 8. The accuracy analysis of the point cloud, histogram of 
3D distances between image and laser point clouds in cm. 
 

4. STRUCTURE FROM MOTION COMPUTATION 

4.1 Sparse Matching and Motion Estimation 

The sparse matching and robust motion estimation technique 
used in this study is mainly based on genetic algorithms (GA). 
It can be considered as an alternative to RANSAC-like 
techniques where the random search is replaced with 
evolutionary search. The algorithm benefits from other novel 
features such as: i) sampling based spatial distribution of points 
which is effective both against degeneracy and ill-
configuration, ii) fast linear calculation of epipolar geometry 
without encountering exceptions in cases of poor motion 
models, iii) adaptive thresholding to detect the inlier 
correspondences, which makes the algorithm robust against 
noise and outliers. 
 
Basically, GA intends to find a subset of inliers from which the 
near-optimal motion model (fundamental matrices) can be 
estimated. To this end, it encodes the putative correspondences 
from feature-based matching into a cellular environment. Then, 
several minimal sets of the correspondences are sampled. A 
guided-sampling strategy based on the spatial distribution of the 
points is used to this end. The whole set of minimal sample sets 
forms the population. In any iteration of the evolution, the 
parent individuals in the population are evaluated against an 
objective function. The objective function is based on the 
concept of least trimmed squares. Then, the genetic operators 
are performed on the selected parents; i.e. they keep being 
crossed-over, mutated and/or randomized to produce a new 
population. These iterations go on the same way until reaching 
an optimal solution, which cannot be improved anymore by 
younger populations. At the end, an adaptive thresholding 
scheme is applied to detect all the inlier correspondences based 
on the estimated motion models. The details of this algorithm 
can be found in our recent publication (Shahbazi et al., 2015). 
 
An important step before sparse matching is to decide which 
image pairs should be matched. In other words, image 
connectivity model should be determined. To this end, the 
method proposed by Ai et al. (2015) is applied. The ground 
fields of view (FoV) of cameras are calculated based on their 
direct EO parameters. Then, stereo pairs with an overlap area 
greater than a threshold are considered to have connection. 
 
4.2 GCP Detection and Block Bundle Adjustment 

Once the motion parameters (relative orientation) are estimated, 
the direct EO parameters can be refined. It is always beneficial 
to make sure that one reference image in the dataset contains 
three or more GCPs. Therefore, the EO of that image can be 
determined accurately and the EO of other images can be 
updated using both the motion parameters relative to the 
reference one and their direct EO parameters. The EO data and 

the coordinates of GCPs are then used to locate GCPs on 
images. The error margin of the approximate EO parameters is 
also applied to find the uncertainty of the GCPs locations on the 
images, by defining their covariance error ellipses. Simple 
colour-based edge detection is used to find the red/yellow edges 
inside the error ellipse and locate the candidate GCPs more 
accurately. Afterwards, a similar ellipse detection method as 
explained in section 2.3 is used to find the exact position of the 
GCPs on the images. Although this process is automatic, the 
user supervision is still required to check the results manually. 
 
Afterwards, it is time to perform block bundle adjustment 
(BBA). The aim of bundle adjustment is to simultaneously 
determine the 3D coordinates of tie points, the EO parameters 
and camera calibration parameters according to the co-linearity 
observation equations. Since, the absolute accuracy of GCPs is 
determined in the surveying process, therefore, it is essential to 
apply them in the BBA. To this end, different BBA strategies 
are tested: i) the minim-constraint least squares optimization 
(LSO) using the GCPs coordinates as weighted observations, ii) 
the inner-constraint LSO giving higher weight to GCPs image 
observations and application of a 7-parameter Helmert 
transformation to the final results afterward.  
 
As the first conclusion obtained, the first strategy (minim-
constraint) is more accurate, since the GCP coordinates can be 
adjusted as well. The second conclusion is that the camera 
calibration parameters, calculated either ways, become so 
sensitive to the number of tie points and stereo pairs. For 
example, in a test where a hundred of stereo pairs are 
participating in the BBA, the focal length is calculated to 
36.028 mm. However, the same parameter is calculated to 
35.102 mm when only twelve high-overlapping images are 
used. We observed the same sort of results in self-calibration 
from Pix4D software. Considering error theories, it is obvious 
that the accuracy of image observations and network 
configuration can influence the values of calibration 
parameters. However, they are still physical quantities and are 
not supposed to change greatly within one specific dataset. 
Therefore, a modified BBA strategy is proposed in this study.  
 
Since we have performed the offline camera calibration several 
times, the parameters obtained by these calibration procedures 
are averaged and their StDs are calculated. A null hypothesis 
that the measured mean and StD values from these sample 
parameters can represent the population's real mean and 
variance at confidence level of 95% is performed with Student's 
t-test. The results show that this null hypothesis can be 
supported by the measured data. Therefore, we modify the BBA 
strategy by considering the camera IO parameters as unknowns 
with known weight. In other words, they are treated as pseudo-
measurements with known variance. As a result, the IO 
parameters from this pseudo-self-calibration do not change 
haphazardly as long as a stable network of images is provided. 
 
4.3 Dense Matching and Scene Reconstruction 

The goal of dense matching is to determine all/most of the 
corresponding points visible in a stereo pair, and to determine 
the disparity map, from which a depth map can be 
reconstructed. Dense matching is generally performed on 
rectified images in order to facilitate the matching by restricting 
it to one direction only (x-axis). There are various techniques in 
the state-of-the-art for dense matching. Valuable reviews of 
these techniques can be found in studies performed by 
Scharstein and Szeliski (2002) and Seitz et al. (2006). Recently, 
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global and semi-global matching techniques have been popular. 
In the global techniques, the disparity values are determined by 
globally minimizing an energy function of disparity. In order to 
make such an optimization possible, mostly hierarchical/ 
iterative algorithms are required to limit the search. This 
increases the computational expenses of matching. Some 
techniques apply shape priors to reduce the computational 
expenses of matching specifically in low-textured images. It 
means that the matching is performed on seed features and the 
results are extended to the patches/ segments. Mostly, a 
technique of occlusion detection or visibility handling should 
also be applied along-with or after the dense matching to avoid 
or remove the outliers caused by occlusion.  
 
In this study, we take the concept of intrinsic curves proposed 
by Manduchi (1998) to develop a new dense matching 
approach. The main improvement that is expected from this 
technique is the computational efficiency from two aspects: i) 
performing global matching by eliminating the need to restrict 
the search area or having initial approximations of disparity 
range, ii) avoiding occlusions by finding and eliminating 
invisible matches even before the matching starts. 
 
An intrinsic curve is a multi-dimensional representation of a 
signal, to which different operators are applied. For imges, this 
definition is clarified with an example. Suppose that the scan-
line (a row) in left rectified image of Figure 9 is denoted as l(xl), 
where xl is the position of each pixel in the left scan-line and l 
represents the intensity. Therefore, an intrinsic curve can be 
constructed as ( )lC l l , where l  is the intensity gradient. 
Likewise, the intrinsic curve can be constructed for the right 

scan-line as ( )rC r r , where r(xr) and ( )rr x are the intensity 
and gradient vectors of the right scan-line. These curves 
translate the scan-lines from the spatial space to the intensity 
space. As proved by Manduchi (1998), intrinsic curves are 
invariant to affine mapping. Therefore, if the transformation 
between the left and right scan-lines was only an affine 
geometric one, then the two intrinsic curves would coincide at 
matching points. However, the images are usually corrupted by 
noise, non-affine geometric transformations and photometric 
transformations. Therefore, there is a non-constant variation 
between the two curves.  

  
a 

b 
Figure 9. Representation of intrinsic curves, a) left and right 
rectified images, b) intrinsic curves in the space of intensity 

Assumption: Assume a pixel at location l
ix on the left scan-line 

whose corresponding point on the right scan-line is located at 

r
ix . Therefore, the disparity value of this point is l r

i i id x x  . 

If the intensities are filtered with a low-pass zero-mean filter, 
then it can be assumed that the photometric transformation 
between two scan-lines at the local neighbourhood of these two 
matches consists of drift (ai) and gain (bi) parameters. 
Therefore, it can be proved, as follows, that the two points 

r l
i ix x  can be corresponding only if the tangents to the right 

and left curves at these points are equal. In practice, equality 
should be replaced with a small threshold to take the remaining 
noise and non-smoothness exceptions into account.  

Proof: The right intrinsic curve of point r
ix ( ( )r

i iC r r ) can be 

predicted from the left intrinsic curve ( ( )l
i iC l l ) as follows:    
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The tangent at this point on left curve ( tan l
i ) is measured as: 
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    (2) 

Thus, the tangent at the predicted corresponding point on the 
right curve ( tan r

i ) can be calculated as: 

1 1 1

1 1 1 1
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i

i

l l
i i i i ir i i i

i l l
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   

   

     
  
      

 (3) 

Using this assumption, a search for potential matches 
(hypotheses) is performed along the intrinsic curves of each 
scan-line. The advantage of this search is that it is performed in 
the limited space of intensity, and it is independent of the 
spatial space. This eliminates the need for having an initial 
range of disparity values. It can be noted that in this search, 
occluded points have almost no chance to be hypothesized. An 
example of occlusion occurred in Figure 9 is shown by arrows. 
It can be seen that the occluded area produces a curve segment 
in left curve which is not compatible with other segments of the 
right one. Figure 10 represents the dense point cloud 
reconstructed from two images, once with the proposed method, 
and once using the SURE software-solution for multi-view 
stereo (Rothermel et al., 2012). It can be seen that the proposed 
algorithm avoids visibility occlusions in the matching process.  
 
Afterward, the matching cost (photo-consistency measure) is 
measured for the hypothesized matches based on census 
transform (Zabih and Woodfill, 1994). Then, graph-based, 
Bellman-Ford path minimization is used to find correct matches 
among the hypotheses by optimizing the matching cost 
function. In the graph, the nodes are the hypothesized matching 
pairs (e.g. 

i

l r
jP C C  ). There is an edge from the matching 

pair mP to nP , if mP is a predecessor of nP , and this edge is 

weighted with the matching cost of pair mP . 
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a b 

 
c d 

Figure 10. Example of two images (a, b) processed for dense 
matching using c) the proposed algorithm, d) SURE software. 
 

5. RESULTS OF SFM ALGORITHMS  

To assess the algorithms proposed in the previous section, a set 
of six over-lapped images from the cliff zone were selected. 
The initial overlapping area of the images was calculated 
(Figure 11), the connectivity matrix between images was 
determined, and the SIFT features on connected images were 
calculated and matched. Then, the robust motion estimation and 
matching was performed to determine the fundamental matrices 
between the stereo pair. Finally, the GCP detection was done 
and BBA with the method proposed in section 4.2 was 
performed. Figure 12 visualizes the results of BBA.  
 
The images were once processed with Pix4D software for self-
calibration, and once with our method (sections 4.1 and 4.2). 
Then, both of the results were input to SURE software for dense 
matching. Also, dense matching was performed with our 
algorithm (section 4.3). Then, the three obtained point clouds 
were compared to the ground-control, laser point cloud. It 
should be noted that our algorithm for dense matching is still 
under development. Therefore, no filtering method is still 
developed for removing outliers. Some of these outliers are 
resulted due to multi-view redundancy and some others are 
caused by the fact that our algorithm still lacks the aggregation 
of smoothness priors to the matching cost. Therefore, the 
disparity maps were compared with those of SURE to remove 
the outliers; nevertheless, in all the stereo pairs, more than 85% 
accordance (where the difference of calculated disparity values 
is less than one pixel) has been noticed between our and 
SURE's disparity maps. Figure 13 visualizes the generated point 
clouds by these tests, and the histograms of distances between 
each point cloud and the laser point cloud are illustrated as well. 
It can be noticed, that slight improvement of accuracy (about 
1.5 cm) is achieved using our algorithm for motion estimation 
and bundle adjustment in comparison with Pix4D results. On 
the other hand, slight improvement of 1 cm is also observed by 
our dense reconstruction method in comparison with SURE. 

 
Figure 11. The approximate fields of view of cameras 

 
Figure 12. Visualization of BBA results 

 

 
a 

 

b c 

 

d e 

 

f g 

Figure 13. Visualization and accuracy analysis of the results. a) 
laser point cloud, b) dense point cloud from SURE using our 
EO and IO parameters, c) histogram of distances between point 
clouds (b) and (a), d) dense point cloud from SURE using 
Pix4D EO and IO parameters, e) histogram of distances 
between point clouds (d) and (a), f) dense point cloud from our 
algorithms, g) histogram of distances between point clouds (f) 
and (a). 
 

6. CONCLUSION 

In this paper, we presented our approaches as well as theoretical 
and experimental developments for implementation and 
evaluation of a UAV photogrammetric system. Both aspects of 
data acquisition and data processing were discussed. The results 
obtained in comparison with the ground-control data, showed 
the efficient performance of our system in terms of data 
acquisition. The comparative results obtained from different 
software packages, showed the potential of our SfM 
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computation algorithms for improving the 3D modelling 
accuracy and efficiency. However, more investigation is still 
required, specifically for the dense matching algorithm.  
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