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ABSTRACT: 

 

This paper presents a novel application of the Visual Servoing Platform’s (ViSP) for small UAV pose estimation in outdoor 

environments. Given an initial approximation for the camera position and orientation, or camera pose, ViSP automatically establishes 

and continuously tracks corresponding features between an image sequence and a 3D wireframe model of the environment.  As ViSP 

has been demonstrated to perform well in small and cluttered indoor environments, this paper explores the application of ViSP for 

UAV mapping of outdoor landscapes and tracking of large objects (i.e. building models). Our presented experiments demonstrate the 

data obtainable by the UAV, assess ViSP’s data processing strategies, and evaluate the performance of the tracker. 

  

 
1. INTRODUCTION 

Precise navigation is required for UAVs operating in GPS 

denied environments, or in dense-multipath environments such 

as urban canyons. This is especially useful in urban missions, 

where the possibility of crashing is high, as UAVs fly at low 

altitudes among buildings and in strong winds, whiles avoiding 

obstacles and performing sharp maneuvers. The GeoICT Lab at 

York University is developing mapping and tracking systems 

based on small unmanned aerial systems such as the Aeryon 

Scout quadrotor small UAV (Unmanned Aerial Vehicle) 

(Aeryon, 2015). The Scout is equipped with a single frequency 

GPS sensor that provides positioning accuracies of about 3 m, 

and an Attitude and Heading Reference System (AHRS) that 

estimates attitude to about 3°. It is also equipped with a small 

forward-looking FPV (First Person Viewing) video camera and 

a transmitter to downlink the video signal wirelessly in real-

time to a monitoring ground station or to virtual reality goggles. 

FPV gives the operator of a radio-controlled UAV a perspective 

view from the ‘cockpit’. This augments the visual line-of-sight, 

offering additional situation awareness. FPV systems are used 

solely as a visual aid in remotely piloting the aircraft.  

 

We have proposed a method to further extend the application of 

this system by estimating the pose (i.e. position and orientation) 

of the UAV from the FPV video as it travels through a known 

3D environment. We have applied a geometric hashing based 

method to match the extracted linear features from the FPV 

video images with a database of vertical line features extracted 

from synthetic images of the 3D building models (Li-Chee 

Ming and Armenakis, 2014). Sub-meter positional accuracies in 

the object space were achieved when proper viewing geometric 

configuration, control points, and tie points are used. The 

obtained quantitative information on position and orientation of 

the aerial platform supports the UAV operator in navigation and 

path planning. If an autopilot is available, this system may also 

be used to improve the navigation solution’s position and 

orientation.  

 

2. VISUAL SERVOING AND VISUAL TRACKING 

In this paper we extend on our previous work where a 3D CAD 

model of the environment is available. We assess the Visual 

Servoing Platform’s (ViSP) registration techniques which 

provide continuous tracking and alignment of features extracted 

from the FPV video image (in real-time) and the 3D model of 

the environment (Marchand and Chaumette, 2005). ViSP 

provides tracking techniques that are divided into two classes: 

feature-based and model-based tracking. The first approach 

focuses on tracking 2D geometric primitives in the image, such 

as points (Shi and Tomasi, 1994), straight line segments (Smith 

et al., 2006), circles or ellipses (Vincze, 2001), or object 

contours (Blake and Isard, 1998). However, ViSP does not 

provide a means to match these tracked image features with the 

3D model, which is required in the georeferencing process. The 

second method is more suitable because it explicitly uses a 3D 

model of the object in the tracking algorithm. Further, a by-

product of this tracking method is the 3D camera pose, which is 

our main objective. This second class of methods usually 

provides a more robust solution (for example, it handles partial 

occlusion of the objects, and shadows). 

 

ViSP has demonstrated its capabilities in applications such as 

augmented reality, visual servoing, medical imaging, and 

industrial applications (ViSP, 2013). These demonstrations 

involved terrestrial robots and robotic arms, equipped with 

cameras, to recognize and manipulate small objects (e.g. boxes, 

tools, and cups) in cluttered indoor environments. This paper 

explores the application of ViSP in mapping large outdoor 

environments by UAVs, and tracking larger objects (i.e. 

building models). Our presented experiments demonstrate the 

data obtainable by the UAV, assess ViSP’s data processing 

strategies, and evaluate the performance of the tracker.  The 

overall workflow is shown in Figure 1. Firstly, a Moving Edges 

Tracker identifies corresponding features between an image 

sequence and a 3D model. The pose is fed back into the Moving 

Edges Tracker. The following sections explain the algorithms in 

more detail. 
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2.1 The Moving Edges Tracker 

The moving edges algorithm (Boutemy, 1989) matches image 

edges in the video image frames to the 3D model’s edges, which 

are called model contours in ViSP. The required initial 

approximation of the camera pose is provided by the UAV’s 

autopilot GPS positioning, and orientation from the AHRS.  

Observations from these sensors are no longer used after 

initializing the camera pose in order to assess ViSP’s tracking 

performance. 

 

 

The process consists of searching for the corresponding point 

pt+1 in the image It+1 for each point pt. A 1D search interval {Qj, 

j  [-J, J] } is determined in the direction δ of the normal to the 

contour. For each position Qj lying the direction δ, a mask 

convolution Mδ corresponding to the square root of a log-

likelihood ratio ζj is computed as a similarity measure. Thus the 

new position pt+1 is given by: 

 
 

𝑄𝑗∗ = argmax 𝑗∈[−𝐽,𝐽] 𝜁𝑗  (1) 
 

with 

 

𝜁𝑗 = |𝐼𝜐(𝑄𝑗)
𝑡+1 ∗ 𝑀𝛿 + 𝐼𝜐(𝑝𝑡)

𝑡 ∗ 𝑀𝛿|          (2) 

 

 
υ(.) is the neighbourhood of the considered pixel, ViSP’s 

default is a 7x7 pixel mask (Comport et al., 2003). 

 

 

Figure 1.  ViSP’s pose estimation workflow. 

 

 
Figure 2. Determining point position in the next image using the oriented gradient algorithm: A) calculating the normal at sample 

points, B) Sampling along the normal, C)-D) 2 out of the 180 3x3 predetermined masks, C) 180o, D) 45o (Comport et al., 2003). 

  
Model contours are sampled at a user specified distance interval 

(Figure 2A). At these sample points (e.g. pt), a one dimensional 

search is performed along the normal direction (δ) of the 

contour for corresponding image edges (Figure 2B). An 

oriented gradient mask is used to detect edges (e.g. Figures 2C 

and 2D). One of the advantages of this method is that it only 

searches for image edges which are oriented in the same 

direction as the model contour. An array of 180 masks is 

generated off-line which is indexed according to the contour 

angle. The run-time is limited only by the efficiency of the 

convolution, which leads to real-time performance (Comport et 

al., 2003). Line segments are favourable features to track 

because the choice of the convolution mask is simply made 

using the slope of the contour line. There are trade-offs to be 

made between real-time performance and both mask size and 
search distance.  
 

2.2 Virtual Visual Servoing 

ViSP treats pose estimation as a 2D visual servoing problem as 

proposed in (Sunareswaran and Behringer, 1998). Once each 

point’s search along its normal vector finds a matching model 

point via the moving edges tracker, the distance between two 

corresponding points is minimized using a non-linear 

optimization technique called Virtual Visual Servoing (VVS). A 

control law adjusts a virtual camera’s pose to minimize the 

distances, which are considered as the errors, between the 

observed data sd (i.e. the positions of a set of features in the 

image) and s(r), the positions of the same features computed by 

forward-projection of the 3D features P. For instance in the 

misclosure Equation (3), oP are the 3D coordinates of the 

model’s points in the object frame, according to the current 

extrinsic and intrinsic camera parameters: 
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∆= (𝑠(𝒓) − 𝑠𝑑) = [𝑝𝑟𝜉(𝒓, 𝑷𝑜 ) − 𝑠𝑑]        (3) 
 

where 𝑝𝑟𝜉(𝒓, 𝑷𝑜 ) is the projection model according to the 

intrinsic parameters ξ and camera pose r, expressed in the 

object frame. It is assumed the intrinsic parameters are 

available, but VVS can estimate them along with the extrinsic 

parameters. An iteratively re-weighted least squares (IRLS) 

implementation of the M-estimator is used to minimize the error 

of the summation ∆ squares. IRLS was chosen over other M-

estimators because it is capable of statistically rejecting outliers. 

 

Comport et al. (2003) provide the derivation of ViSP’s control 

law. If the corresponding features are well chosen, there is only 

one camera pose that allows the minimization to be achieved. 

Conversely, convergence may not be obtained if the error is too 

large. 

 

2.3 TIN to Polygon 3D Model 

ViSP specifies that a 3D model of the object to track should be 

represented using VRML (Virtual Reality Modeling Language).  

The model needs to respect two conditions: 

1) The faces of the modelled object have to be oriented so 

that their normal goes out of the object.  The tracker uses 

the normal to determine if a face is visible. 

2) The faces of the model are not systematically modelled by 

triangles.  The lines that appear in the model must match 

image edges. 

 

Due to the second condition, the 3D building models used in the 

experiments had to be converted from TIN (Triangulated 

Irregular Network) to 3D polygon models. The algorithm 

developed to solve this problem is as follows: 

1) Region growing that groups connected triangles with 

parallel normals. 

2) Extract the outline of each group to use as the new polygon 

faces. 

 

The region growing algorithm was implemented as a recursive 

function. A seed triangle (selected arbitrarily from the TIN 

model) searches for its neighbouring triangles, that is, triangles 

that share a side with it, and have parallel normals. The 

neighbouring triangles are added to the seed’s group. Then each 

neighbour looks for its own neighbours. The function terminates 

if all the neighbours have been visited or a side does not have a 

neighbour. For example, the blue triangles in Figure 3 belong to 

one group.   

 

Once all of the triangles have been grouped, the outline of each 

group is determined (the black line in Figure 3). Firstly, all of 

edges that belong to only one triangle are identified, these are 

the outlining edges.  These unshared edges are then ordered so 

the end of one edge connects to the start of another.  The first 

edge is chosen arbitrarily. 

 

Figure 4A shows the 3D TIN model of York University’s 

Lassonde Buillding. Figure 4B shows the resulting polygon 

model of the same building. 

 

3. RESULTS AND DISCUSSION 

The 3D virtual building model of York University’s Keele 

Campus campus (Armenakis and Sohn, 2009) was used as a 

known environment. The model consists of photorealistic 3D 

TIN reconstructions of buildings, trees, and terrain (Figure 5). 

The models were TIN (Triangulated Irregular Network) 

reconstructions of buildings, trees, and terrain. The model was 

generated from building footprint vector data, Digital Surface 

Model (DSM) with 0.75m ground spacing, corresponding 

orthophotos at 0.15 m spatial resolution and terrestrial images. 

The 3D building models were further refined with airborne lidar 

data having a point density of 1.9 points per square metre 

(Corral-Soto et al., 2012). 

 

 

 

 
 

Figure 3. An example of region growing and outline detection:  

The blue triangles belong to a group because one triangle is 

connected to at least one other triangle with a parallel normal.  

The outline of the group (black line) consists of the edges that 

belong only to one triangle. 

 

 

 

 
 

Figure 4. Converting TIN building models to polygon models. 

A) The original TIN model of the York University’s Lassonde 

Building. B) The resulting 3D polygon model of the Lassonde 

Building.  
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The 3D CAD model serves two purposes in the proposed 

approach. Firstly, it provides the necessary level of detail such 

that individual buildings can be uniquely identified via ViSP’s 

moving edges algorithm. Secondly, it provides ground control 

points to photogrammetrically estimate the camera pose. The 

geometric accuracy of the building models is in the order of 10 

to 40 cm. 

 

In our tests we used the data of an Aeryon Scout quadcopter 

which flew over York University, up to approximately 40 

metres above the ground, while its onboard camera focused on 

buildings, walkways, and trees. Figure 6 shows the UAV’s 

flight path for the presented experiment.  

 

 

 
Figure 5.  York University's 3D campus model 

 

 

Figure 6. Aeryon Scout’s flight path over the Lassonde 

building 

 

 

 
Figure 7. Sample frames demonstrating ViSP’s model-based tracker.  The West side (A-C) and North side (D-F) of York 

University’s Lassonde Building are being observed, the 3D building model is projected onto the image plane (red lines) using the 

respective camera intrinsic and extrinsic parameters. Harris corners (red crosses with IDs) are also being tracked.
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Figure 8. Additional sample frames demonstrating ViSP’s model-based tracker. The East side of York University’s Lassonde 

Building is being observed, the 3D building model is projected onto the image plane (red lines) using the respective camera intrinsic 

and extrinsic parameters. Harris corners (red crosses with IDs) are also being tracked. 

The camera’s intrinsic parameters were calibrated beforehand 

and held fixed in the pose estimation process.  The image 

frames were tested at 480p, 720p, and 1080p resolutions. The 

trials revealed that, at 40 metres above ground level, 480p 

video performed the best in terms of processing speed and 

tracking performance. The tracking performance improved 

because the noisy edges detected by the Moving Edges 

Tracker at higher resolutions were removed at lower 

resolutions, leaving only the stronger edge responses. 

 

1137 frames were processed at 6 frames per second. Figure 

7A-F shows several results from the tracking along the West 

side and North side of the Lassonde Building. The red lines 

are the projections of the 3D building model onto the image 

plane using the respective camera pose.  It is evident that, 

although the tracker does not diverge, there is misalignment 

between the image and the projected model; this is due to 

error in the camera pose. Figure 8A-F shows results from 

ViSP along the East side of the Lassonde Building. Notably, 

from frame E) to F) in both Figure 7 and 8, ViSP’s robust 

control law decreases the misalignment between the image 

and model. 

 

Figure 9 shows a comparison between the UAV’s trajectory 

according to the onboard GPS versus ViSP’s solution. Figure 

10A-C shows the positional coordinates in the X, Y, and Z 

axes, respectively, from the GPS solution and ViSP’s 

solution. Figure 10D shows the coordinate differences 

between the two solutions, and Table 1 provides the average 

coordinate differences, along with the standard deviations. 

These figures show gaps in ViSP’s trajectory from when 

tracking was lost.  This was the result from a lack of model 

features in the camera’s field of view, and because of rapid 

motions due to the unstabilized camera. 

 

The camera was attached the UAV using a pan-tilt mount, so 

the camera pitched and yawed independently from the UAV.  

Therefore, the AHRS’ roll and pitch axes did not align with 

the camera frame. However, for both the AHRS’ and ViSP’s 

the direction cosine matrix rotation sequences are ZYX, thus 

their Z-axes are parallel. The camera did not pan throughout 

the flight, so there was a constant offset between the AHRS 

and camera yaw angles (60.125o).  

 

 
Figure 9. An overhead view of the UAV’s trajectory 

according to the onboard GPS (green) and ViSP solution 

(red). 
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Figure 10. Positional coordinate comparison between the GPS 

solution and ViSP’s solution. 

 

Table 1. Mean and standard deviation for the difference in the 

UAV’s positional coordinates from its onboard GPS and 

ViSP. 

 

Mean 

 

Standard 

Deviation 

∆X [m] 8.78 ±9.23 

∆Y [m] -1.19 ±12.16 

∆Z [m] 6.65 ±2.73 

∆ψ[o] 0.15 ±13.87 

 

Figure 11A shows the yaw angles, after removing the offset, 

and Figure 11B shows the difference.  It is evident that 

ViSP’s yaw estimate agrees well with the AHRS solution.  

The jumps in the data again show where tracking was lost and 

reset. Table 1 provides the mean difference in yaw (∆ψ), 

along with its standard deviation.    

 

 
Figure 11. Yaw angle comparison between the GPS solution 

and ViSP’s solution. 

 

The experiments suggested that ViSP can provide only an 

initial approximation for camera pose. This is because the 

Moving Edges Tracker is a local matching algorithm. A 

simultaneous bundle adjustment will globally optimize the 

camera poses, leading to an increase in the accuracies. Figures 

7 and 8 show red points that are labelled with their ID 

numbers, these are Harris corners being tracked using a KLT 

tracker (Lucas and Kanade, 1981).  They may be used as tie 

points in the bundle adjustment to further optimize the camera 

poses and generate a sparse point cloud.  Dense matching 

(Rothermel et al., 2012) could be used to increase the point 

cloud’s density. The Iterative Closest Point (ICP) algorithm 

(Besl and McKay, 1992) may then be used to refine the 

alignment between the point cloud and the 3D building 

model; this should further increase the camera pose 

accuracies. As both large-scale bundle adjustment, dense 

matching, and ICP are computationally intensive, they should 

be done in a post-processing stage.   

 

The real-time camera pose accuracies can be improved by 

augmenting ViSP’s pose estimate with another pose 

estimation system.  For instance, one could integrate ViSP’s 

pose with the positional and orientation data from the UAV’s 

onboard GPS and AHRS, respectively, through a Kalman 

filter. This would both increase the accuracy of the pose and 

bridge GPS gaps. 

 

4. CONCLUSIONS AND FUTURE WORK 

This work explored the application of ViSP in tracking 

building models from a video sequence collected by a UAV. 

Our presented experiments demonstrated the data obtainable 

by the UAV, assessed ViSP’s data processing strategies, and 

evaluated the performance of the tracker. Future work 

includes implementing a Kalman filter to integrate the UAV’s 

GPS and AHRS data with ViSP’s pose estimation system. 

Then bundle adjustment, dense matching, and ICP will be 

incorporated to globally optimize the camera poses. 
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