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ABSTRACT: 

 

Images captured in foggy weather conditions often suffer from poor visibility, which will create a lot of impacts on the outdoor 

computer vision systems, such as video surveillance, intelligent transportation assistance system, remote sensing space cameras and 

so on. In this paper, we propose a new transmission estimated method to improve the visibility of single input image (with fog or 

haze), as well as the image’s details. Our approach stems from two important statistical observations about haze-free images and the 

haze itself. First, the famous dark channel prior, a statistics of the haze-free outdoor images, can be used to estimate the thickness of 

the haze; and second, gradient prior law of transmission maps, which is based on dark channel prior. By integrating these two priors, 

to estimate the unknown scene transmission map is modeled into a TV-regularization optimization problem. The experimental results 

show that the proposed approach can effectively improve the visibility and keep the details of fog degraded images in the meanwhile. 
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1. INTRODUCTION 

The presence of haze in bad weather will result in poor visibility 

and contrast lost in images, as a result, a lot of bad impacts will 

arise on computer vision applications, such as outdoor 

surveillance, object recognition and tracking, unmanned vehicle 

systems etc. and make the performance of these vision 

applications lose authenticity and practical value because all of 

these vision system are based on the assumption that the 

radiance from a scene point to observers is not altered by the 

airlight and intermediate medium. Therefore, in order to obtain 

the haze-free images and recover color, visibility and details of 

scene from degraded images, haze removal from images is 

inevitable. 

 

Recently, image dehazing has become an important and urgent 

research problem in the field of computer vision, it has been 

receiving more and more increasing interests. However, since it 

is depth dependent, some classical image enhancement 

techniques, such as histogram equalization, histogram 

specification, can't receive satisfying effect. Dehazing 

techniques from the perspective of physical model of degraded 

images have emerged. 

 

In earlier years, some dehazing approaches have been proposed 

mainly based on using multiple hazy images as input or 

additional depth knowledge. The basic idea is to exploit the 

differences between multiple images captured in the same scene 

under different atmosphere conditions. Narasimhan et al. (S. G. 

Narasimhan 2003a and S. Nayar 1999a) propose a physics-

based scattering model for scene structure from two or more 

degraded images. Polarized filter-based DOP method from 

multiple images taken with different degrees of polarization of 

same scene is described by Schechner et al. (Schechner 2001a 

and S. Shwartz 2006a). In addition, some depth-based methods 

are proposed for dehazing by requiring to provide some depth 

information from user inputs or known 3D models. For example, 

Tan et al. (K.K. Tan 2000a) dehaze images by assuming the 

scene depth is given. Kopf et al. (Kopf, 2008a) also proposed a 

dehazing method by using the scene depth information provided 

in 3D geographic models of scene. 

 

However, above dehazing methods by taking multiple images of 

the same scene or additional depth knowledge usually difficult 

in many practical applications. Single image dehazing methods 

by using some stronger priors or assumptions have received 

much attention in these years and achieved significant progress. 

By directly maximizing the local  contrast of a haze image, Tan 

et al. (R. T. Tan, 2008) propose an effective method for single 

image visibility enhancement, especially for regions with heavy 

hazes. However,  sometimes it will fail since  the method is not 

based on physical model. By assuming the transmission and 

surface shading  are locally uncorrelated, Fattal (R. Fattal, 2008) 

estimates the haze by independent component analysis and then 

infers the medium transmission and the color, but can't work 

well for heavy fog image. Some novel dehazing methods from a 

single image using a Markov random field (MRF) framework 

are also described in recent papers (Fan Guo, 2014a and Tarel 

2013). Tarel and Hautiere proposed a median filter-based single 

image visibility restoration algorithm which can effectively 

preserve both edges and corners(JP Tarel and N.Hautiere, 2009); 

In addition, Ketan Tang et al. (Ketan Tang, Jianchao Yang, Jue 

Wang, 2014) try a learning-based new idea for single image 

dehazing by using random forest to learn a regression model for 

transmission estimation  of  hazy images.  

 

So far, the most effective prior used for single image dehazing 

is the dark channel prior proposed by He et al.( K. He, 2009a), 

the prior is based on the important observation that most local 

patches in outdoor haze-free images contain some pixels whose 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-355-2015

 
355

javascript:void(0);
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ketan%20Tang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianchao%20Yang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jue%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jue%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jue%20Wang.QT.&newsearch=true


 

 

intensity is very low in at least one color channel, this prior plus 

a soft-matting technique will work very well for single image 

dehazing, however, it is computational expensive. In order to 

solve the computation problem, many improved algorithms 

were presented, in which, Hu et al. (Hu Wei, 2010a) propose a 

novel gradient prior law based on dark channel prior. 

 

In this paper, inspired by the patch-based dark channel prior 

and the gradient prior law, we propose a new transmission 

estimated method to enhance the visibility of the degraded 

image and preserve more image details at the same time. Our 

proposed new method is a two-step estimated method: firstly, a 

combination  transmission function is defined by integrating the 

dark channel prior and gradient prior law, the new function can 

help to preserve more details because of its using a different 

patch size for transmission computing in depth abrupt jump 

regions; Then, the optimal scene transmission is further 

modeled into a TV- regularization problem for reducing halo 

artifacts. In this way, the final restored image can be obtained 

by taking the optimal transmission map into the image 

degradation model.  

 

The rest of this paper is organized as follows. In Section 2, we 

introduce the image degradation model and the two useful 

priors - dark channel prior and gradient prior law; our two-step 

transmission estimation method including the combination 

transmission function and the optimal transmission computing 

by TV- regularization is described and detailed in Section 3; the 

experimental results and conclusion are discussed in Section 4 

and Section 5.      

 

2. RELATED WORK 

2.1 Image Degradation Model 

In computer vision field, the foggy image degradation model is 

widely described as follows: 

 

( ) ( ) ( ) (1 ( ))I x J x t x A t x                       (1) 

 

This equation is the  model defined on the three RGB color 

channel. Here, x is the pixel location, I(x) represents the hazy 

image, i.e., the observed image, J is the scene radiance, i.e., the 

haze-free image, A is the global atmospheric light, usually we 

assume it as a constant, and t(x) is the scene transmission, which 

is correlated with scene depth based on the Lambert-beer law, 

and be expressed as follows: 

 
( )( ) d xt x e 

                                  (2)                                        

 

Here,   is the medium extinction coefficient, ( )d x is the scene 

depth. 

 

In equation (1), the term ( ) ( )J x t x  usually is called the direct 

transmission of  light from the object surface, and the second 

term (1 ( )t x A usually is called the airlight, as well the 

intensity of the atmospheric veil (JP Tarel and N.Hautiere, 2009) 

 

The goal of image dehazing is to recover the scene radiance 

( )J x from ( )I x based on eq.(1), this requires us to estimate 

( )t x and A from observed image ( )I x  firstly. 

 

2.2 Dark Channel Prior and Block Effect  

To solve the single image dehazing problem, He et al. propose a 

very simple but effective dark channel prior, which is a 

statistical  assumption based on their observations of plenty of 

haze-free outdoor images. According to the dark channel prior, 

in most of the non-sky local image areas, at least one color 

channel will have pixels with very low intensity, in  other words, 

the minimum intensity in such local patch should have a very 

low value, even close to zero and three main factors attribute 

the low intensity in the dark channel, that is, shadows, colorful 

objects and dark objects. 

 

For any image ( )J x , the dark channel is defined as follows: 

 

( ) ( , , )
( ) min ( min ( ))dark c

y x c r g b
J x J y

 
                       (3) 

 

Here, cJ is a color channel of J , and ( )x is a local patch 

centered at  x. 

 

According to the dark channel prior, in most of non-sky local 

image areas, we have, 

 

( ) ( , , )
( ) min ( min ( )) 0dark c

y x c r g b
J x J y

 
                 (4) 

 

With this statistical prior as theory constraints, He et al. suggest 

a 15*15 patch size to get dark channel with the assumption that 

depth is always same in a local patch, that is, the transmission 

( )t x is constant in the window, then the following eq. can be 

deduced: 

 

( )

( )
( ) 1 min (min )

c

cy x c

I y
t x

A
                           (5) 

 

Here, ( )t x  is the initial estimate value for transmission, further, 

the eq. is modified by 

 

( )

( )
( ) 1 min (min )

c

cy x c

I y
t x

A



                         (6) 

 

Here, [0,1] is a factor which describes the sense in the real 

world.  

 

However, the assumption will fail when there are abrupt depth 

jumps in the patch, halo effects will appear and the bigger the 

patch size, the more serious the effects. 

 

In order to avoid the block halo problem, He et al. use a soft-

mating operation to get refined transmission map ( )t x , then the 

haze-free image ( )J x  can be recovered by the following 

Eqution,  

 

0( ) ( ( ) ) / max( ( ), )J x I x A t x t A                  (7) 

 

Here, 
0t is a small constant (a typical value is 0.1 by He)for 

avoiding division by zero. 
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2.3 Transmission Map Gradient Prior Law  

The soft matting method works very well for halo removal, 

however, this operation will have expensive computational cost, 

therefore, lots of improved algorithms appear recently aiming at 

solving this problem. In which, Hu et al. (Hu Wei, 2010a) 

propose a transmission map gradient prior law based on dark 

channel prior.  

 

This new prior comes from the experimental results in which  

the difference between the recovered haze-free 

image ( )J x and ( )J x by using initial transmission map 

( )t x and the ( )t x after soft-mating has been studied. In plenty 

of experiments, they find that t t is very small in most image 

areas, which result in corresponding J J  is very small in most 

areas, only except in a few abrupt depth jump areas, and it is 

also corresponding to the areas that have obvious different 

brightness in the transmission map. According to this 

experimental result, they propose a new prior assumption, 

called transmission map gradient prior law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this prior law, Hu et al. (Hu Wei, 2010a) draw the 

conclusion that the areas with bigger gradient changes are the 

areas need to be  further optimized; and the areas with smaller 

gradient changes have no urgent  need  to  be  further  

optimized. The  areas  with   bigger gradient changes are also 

the areas with bigger depth changes in the meantime. 

 

Therefore, when soft-mating optimal operation or other refining 

operation is done to initial transmission map ( )t x  for refining, 

we don't need all the pixels in map ( )t x image involved and 

just need to pay attention to the pixels in abrupt depth jump 

areas that correspond to intensity edge abrupt jump area, and it 

will reduce the computation cost greatly. 

 

From Hu et al. experimental results, we can draw a further 

conclusion that, the halo size in the problem area (that is the 

halo effect area corresponding to the depth abrupt jump area) is 

very relevant to the block patch size, the halo effect will be 

more serious when the patch size is bigger. However, a big size 

guarantee us the statistical validity of dark channel prior, so, in 

order to reduce halo artifacts, a small patch size should be 

chosen just in the depth abrupt jump areas, which will help to 

preserve  more details in the meantime. 

 

In order to illustrate this new gradient prior assumption and 

conclusions more intuitively and easily, here, we use the 

experimental result images in Hu et al. 's  paper (Hu Wei, 2010a) 

directly, as Figure 1 and Figure 2 shown, we can see above 

conclusions from this prior in images with whatever smooth 

depth variation or steep depth variation. 

  

3. PROPOSED NEW METHOD 

To solve the single image dehazing problem, appropriate 

transmission function ( )t x and the global atmospheric light A 

should be estimated from the observed image I(x), it is 

essentially ill-posed problem. To cope with the ill-posed nature 

of these problems,  some techniques under regularization have 

been developed and work well by adding some prior knowledge 

expressed into the regularization term. 

 

In this paper, based on He's method for the atmospheric light A 

estimation, that is, by picking up the top 0.1% brightest pixels 

in the dark channel, we take the average intensity as the 

estimate of atmospheric light A.   

 

Dark channel prior is based on the statistical assumption that 

the pixels in a local image patch has the same value. However, 

pixels in a local image patch will not always share a similar 

depth value, the assumption fails in abrupt depth change areas. 

In this section, we propose a two-step estimated method for the 

appropriate transmission map: define a new combination  

transmission function and further scene transmission 

optimization by TV-regularization. In this way, the final 

dehazing image can be obtained by taking the optimal 

transmission map into the image degradation model.  

 

A. Combination Transmission Function Defination 

In section 2.2, we have conclusions from gradient prior law that 

initial calculated transmission by dark channel prior can be used 

directly for the recovery of the vast majority of the region, we 

only need to optimize a few pixels in problem areas; In addition, 

the size of the problem areas is very related to the  patch size 

used in dark channel prior, the bigger the patch size, the more 

Figure 1. Dehazing photo with smooth depth variation. (a) Input 

image I (b) Coarse transmission map t' (c) Refined transmission 

map t (d) J J   (e) Dehazing image by t' (f) Dehazing image by t 

 

 

Figure 2. Dehazing photo with steep depeth variation. (a) Input 

image  I (b)Coarse transmission map t' (c) Refined transmission 

map t (d) J J   (e) Dehazing image by t (f) Dehazing image by t 
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serious the halo artifacts, that is to say, the loss of the details 

will be more. So, in order to get more appropriate transmission 

value and preserve more details for further image dehazing, we 

should adjust the patch size to an appropriate size according to 

the detail information in patches, that is, in the abrupt depth 

jumps area, we need to use a smaller size patch, and regular size 

patch in others. Therefore, we define a new transmission  

combination function as follows: 

 

( )
( )

( )new

t x x B
t x

t x x B

 
 



                                (8) 

 

Here, B represents the area in which depth change is not 

obvious or abrupt, and B  represents the area in which depth 

change is obvious and abrupt, that is, there is edge pixels in this 

area. ( )t x is the initial transmission value under dark channel 

prior by the patch size usually chosen as 15*15.  

 

Notice that halo artifacts always appear in the depth jump areas 

corresponding to transmission abrupt jump areas,  so, in our 

paper, we detect edge abrupt jump position firstly in the initial 

transmission map ( )t x image, not directly in the fog image to 

avoid too many unnecessary edge pixels, and then extend the 

edge area to a wide area according to the patch size used under 

dark channel prior, as Hu et al. does in (Hu Wei, 2010a). We 

can regard this as an 'inverse process' to achieve the halo area, 

and we call it problem areas need to be processed; Then, for 

each pixel in the problem areas, we use 3*3 block size for the 

patch for ( )newt x by dark channel prior just because small patch 

size can be fit better to the edge jump area.  

 

In this way, that is, using different patch size in different region 

for transmission estimating, the new defined combination 

function can help us preserve more details in the abrupt depth 

jump regions and reduce the halo artifacts simultaneously. 

. 

B. Transmission map Smoothing by TV- Regularization 

The above defined combination transmission function can get a 

more accurate value compared with  that based on a constant 

size patch, however, some small halo artifacts will still exist in 

the dehazing image where there is abrupt depth change, because 

essentially above proposed combination transmission function 

is still a block-based method. In this section, we will try to do 

some further improvements for optimal transmission map. 

 

Note, in order to avoid letter confusing with time t in derivative 

operation, in the following text, we use ( )u x  to represent 

transmission t(x). 

 
Considering the facts that the depth jumps generally are related 

to the pixels at image edges, and so as the transmission, because 
( )( ) d xu x e  , therefore, transmission map ( )u x  should have 

the patch-wise character, that is to say, gradient magnitude is  

sparse, and Total variation (TV) - regularization based method 

can describe well this character and preserve more details in 

edge regions, so, the problem that smoothing the transmission 

map for reducing the halo artifacts in abrupt jump regions can 

be modeled into a TV-regularization optimization problem, then 

its iterative optimal solution is just the optimal transmission 

map with fewer halo artifacts.   

 

TV-regularization was introduced by Rudin, Osher and 

Fatemi(called ROF model) in(Rudin, Osher, Fatemi,1992a), and 

become popular in recent  years and has been successfully used 

in image processing with ill-posed problems, the TV energy 

model is as follows: 

 

2

0 0[ ] ( ( ) ( )) (
2

TVE u u u x u x dx u xdx


 
              (9) 

 

Here, the first part is fidelity term and  the second part is TV 

regularization term, the parameter  balances the TV 

regularization term and the fitting term. Ideally, its optimal 

value should be estimated as well, and in most practical 

applications, it often serves as a tunable parameter to balance 

the fidelity of the restored image features and the suppression of 

oscillatory image noises(Tony.F, Jianhong Shen, 2005).  

 

Computationally, the TV regularization model (9) is usually 

solved via its formal Euler-Lagrange equations. 

 

0)().( 0 



 uu

u

u


                              

(10) 

 

Adopt the steepest descent marching with artificial time t: 

 

0.( ) ( )
u u

u u
t u


 

  
 

                              (11) 

 

Then, we can get the discrete iterative formula as follows, 

 

,1 0

, , , ,

,

( ) ( )

n

i jn n n

i j i j i j i j n

i j

u
u u t u u t div

u


 
      

  

      (12) 

 

Here, ,i j is the coordinates of pixel x . 

 

So far, we have described the two stages for transmission map, 

for completeness, the proposed algorithm is as follows:  

1)  Input fog image ( )I x ; 

2) Compute the dark channel darkJ and the airlight A , Get 

initial transmission ( )t x  under dark channel prior by the patch 

size 15*15 and let ( ) ( )t x t x ; 

3) Detect edge in the initial transmission map ( )t x  and extend 

the edge pixel to a wider edge region according to the above 

used patch size, get a binary constraint image; 

4) In above extended edge region, compute the new 

transmission ( )newt x  under dark channel prior by a smaller patch 

size 3*3 and let ( ) ( )newt x t x  for the pixels in this region; 

5)  Let 
0( ) ( )u x t x ; 

6) Parameters initialization for TV minimization, including set 

iterations times, time step and regularization parameter; 

7) Perform iteration by ROF model discrete iterative formula  

until the maximum number of iterations  is attained; 

 

,1 0

, , , ,

,

( ) ( )

n

i jn n n

i j i j i j i j n

i j

u
u u t u u t div

u


 
      

  
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8) Output the final refined transmission ( )u x  and let 

( ) ( )t x u x . 

 

Till now, haze-free image J(x) can be derived by Eq. (7). 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to describe proposed method in detail and verify its 

practicability and effectiveness, we will give three group 

experimental results in this section. MATLAB R2014a is used 

to implement experiments on computer which has the windows 

7 system with intel core i7 and 4G RAM. 

 

Since the abrupt depth jump region in image is mostly 

corresponding to the edge, here, we firstly use edge detection to 

estimate the abrupt depth jump region. Simultaneously, in order 

to ensure its  accuracy and avoid unnecessary weak edge pixels, 

we detect edge pixels on initial transmission map, not directly 

on original fog degrade image. As shown in Figure3, (a) is the 

input original fog image with poor color and contrast, if we 

detect edge pixels directly in it, we will get too many weak and 

unnecessary edges, as shown in (c). 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the experimental results, we can see that, by detecting the 

edge pixels on initial transmission map Figure 3(b), not directly 

on original fog image will make us describe the  abrupt depth 

jump region more accurate, because we just need to leave the 

significant edge pixels as a reference, just as Figure 3(d) shows, 

the significant edge pixels are detected. 

 

After that, the depth abrupt jump region can be got by extending 

from the edge pixels according to the patch size in dark channel 

prior. this is the most possible depth abrupt jump region, that is 

also the halo region we need to process. 

 

Then, our experimental results about smoothing transmission  

map by TV-regularization are given. As Figure4 shows,  we 

smooth the transmission map Figure 4(a) by TV-regularization 

and the parameters including iterations times niter, time step 

timestep and regularization parameter lamda. Specifically, we 

set niter=200 lamda=0.1,  timestep=0.01 and the smooth result 

is shown in Figure 4(b). The iteration process and  iteration 

formula are described in section 3. 

 

From the contrast results in Figure 4(a) and Figure 4(b), we can 

see that the patch-wise constraints of transmission function in 

TV-regularization model will give us better smoothing 

transmission map. 

 

Finally, to demonstrate effectiveness of the proposed method,  

we compare our method with He's method on single image 

dehazing. Figure 5 and Figure 6 illustrate the comparisons of 

proposed method with He's work. 

 

As can be seen from the results, our method can produce 

comparable results with He's method, also can effectively 

enhance visibility of single input image with no more other 

information, and preserve image’s details. This benefits from 

the two important statistical observations priors about haze-free 

images and the haze itself and the TV-regularization patch-wise 

character. Therefore, the hazes in the images can be fully 

removed and produce the clear image with good visibility, good 

color  with more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we have proposed a new transmission estimation 

method for single image dehazing. Our method benefit from 

two priors, that is dark channel prior and transmission gradient 

prior law, based on them, a two-step transmission map can be 

achieved, that is, a combination function-based transmission 

map and a further optimized transmission map based on TV-

regularization, respectively. 

 

The proposed new method not only can preserve more details in 

depth abrupt jumps areas, but also can be without no more 

assumption on the fog model. Experimental results show that 

proposed approach works well for dehazing single image. In the 

future, we will try to add more appropriate  constraints on our 

(a) Initial transmission map       (b) TV iteration result 

Figure 4. Initial transmission and TV smoothing result 

 

(a) Input fog image      (b) He's method     (c) Proposed method 

Figure 6.  Comparison with He's work 

 

 

(a) Input fog image     (b) He's method      (c) Proposed method 

Figure 5. Comparison with He's work 

 

 
     (c) Edge detection for (a)       (d) Significant edge for (b) 

Figure 3. Edge detection for abrupt depth jumps  

 

      (a) Original fog image             (b) Initial transmission map 
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model and extend our method to video and make it suitable to 

surveilance and some unmanned vehicle systems. 
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