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ABSTRACT: 

 

The co-registration of 3D point clouds has received considerable attention from various communities, particularly those in 

photogrammetry, computer graphics and computer vision. Although significant progress has been made, various challenges such as 

coarse alignment using multi-sensory data with different point densities and minimal overlap still exist. There is a need to address 

such data integration issues, particularly with the advent of new data collection platforms such as the unmanned aerial vehicles 

(UAVs). In this study, we propose an approach to align 3D point clouds derived photogrammetrically from UAV approximately 

vertical images with point clouds measured by terrestrial laser scanners (TLS). The method begins by automatically extracting 3D 

surface keypoints on both point cloud datasets. Afterwards, regions of interest around each keypoint are established to facilitate the 

establishment of scale-invariant descriptors for each of them. We use the popular SURF descriptor for matching the keypoints. In our 

experiments, we report the accuracies of the automatically derived transformation parameters in comparison to manually-derived 

reference parameter data. 
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1. INTRODUCTION 

Terrestrial laser scanners (TLS) point clouds capture prominent 

ground details such as building facades, whereas vertical UAV 

imagery enables us to generate models of roof structures and 

other missing details which the TLS are unable to collect. 

Combination of their datasets has potential use in applications 

such as automatic 3D building modelling, accident and crime-

scene reconstruction/analysis and open-pit mining. In this 

paper, we present an approach to align photogrammetrically-

derived UAV 3D point clouds with TLS points. 

 

The UAV and TLS data used in this work have different point 

densities. The 3D UAV point clouds were generated from 

downwards-looking camera using a Structure from Motion 

approach, thus the UAV 3D data are in a local 3D photographic 

coordinate system. We assume no prior information such as 

GPS or IMU data is available. The TLS 3D data are referenced 

in a rectangular Universal Transverse Mercator (UTM) / 

orthometric heights reference frame. Thus both data sets are in 

different coordinate systems. To map the UAV point clouds into 

UTM system, the 3D conformal transformation parameters (1 

scale factor, 3 rotation angles and 3 translational components) 

must be estimated based on corresponding points / features 

between the two data sets. To determine these corresponding 

points our approach begins by detecting 3D keypoints on both 

the TLS and UAV point clouds. Our keypoint extraction 

method utilizes curvature extremas to identify significant point 

surface landmarks, for example, buildings corners and general 

areas of sharp changes in slope. To estimate the 3D 

transformation parameters, we require a minimum of 3 keypoint 

correspondences. To find the matching keypoints we use the 

SURF descriptors (Bay et al. 2008) characterizing the height 

surface around each keypoint. The descriptors are feature 

vectors which encode the keypoint’s ‘DNA’, i.e., they uniquely 

characterize each individual keypoint. Since keypoints on two 

3D surfaces vary due to conformal surface changes, the 

matching of descriptors permits the identification of common 

keypoints on both the source and target 3D point surfaces to 

ensure successful feature point matching. Figure 1 illustrates 

our methodological framework. 

 

 

2. RELATED WORKS 

There is some works which integrate both airborne and 

terrestrial laser scanning datasets (ALS and TLS). Cheng et al. 

(2013) presented a semi-automated building corner matching 

approach to co-register airborne and terrestrial laser scanning 

data. Their method uses an extension and intersection of 

building boundaries to form 3D structural corners on both the 

TLS and ALS. The corners are matched using a random 

sampling and verification strategy. An alternative TLS and ALS 

matching technique using linear features was proposed by von 

Hansen et al (2008). Firstly, lines are extracted from the raw 

point clouds. This is done using the edge points from point 

cloud planes are established using the eigenvector of the 

covariance matrix of each point cloud. Edge points with the 

similar eigenvectors are considered to be members of the same 

linear feature and are linked together to form the 3D line. 

Afterwards the rotation and translation between the TLS and 

ALS datasets are sequentially estimated. The rotation is 

computed by correlating the individual orientation histograms 

formed using ALS and TLS lines.  
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Figure 1. Proposed approach for UAV & TLS point cloud DSM 

alignment 

 

 

The translation is then computed using a ‘generate and test’ 

approach, where the quality of all combinations of line matches 

are assessed using the closeness of matching ALS and TLS line 

midpoints. However, the method lacks the capability to cope 

with potential scale differences between datasets. 

There is a dearth of relevant work in the alignment of 

photogrammetrically-derived UAV point clouds and LIDAR 

data. From the reviewed literature, Yang and Chen (2015) has 

presented a sensor-driven method to address the aforementioned 

registration problem. Imagery and 3D LIDAR points are 

collected simultaneously from a rotor-wing mini UAV with a 

Canon 5D Mark II camera and Riegl LMS-Q160 scanner 

respectively. They begin by extracting building outlines from 

LIDAR data and back-projecting these outlines onto the UAV 

imagery. The back-projection relies on prior position and 

orientation (POS) data acquired by an on-board Novatel Span 

technology. To improve this initial alignment, dense 3D point 

clouds are generated from the UAV images. Then, the refined 

transformation parameters are acquired by applying the Iterative 

Closest Point (ICP) algorithm on the 3D UAV points and the 

LIDAR points. In this work, our proposed alignment approach 

is entirely data-driven and is independent of any expensive POS 

sensor data. 

 

3. METHOD 

To automatically co-register the UAV and TLS surface models, 

we employ a point feature matching approach. Firstly, surface 

points are automatically detected using a 3D keypoint extractor. 

Afterwards, scale and rotation invariant descriptors must be 

generated for all keypoints to handle these transformation 

differences between the point cloud DSMs. We explore and 

SURF (Speeded up robust features) descriptor (Bay et al. 2008) 

method for this application.  

 

 

3.1 Extraction of scale-invariant DSM points  

Curvature is a representation of terrain roughness. Regions of 

high curvedness will intuitively be more distinct than areas of 

lower curvature. A planar region is defined by surface points 

which share similar elevation. Rougher, more complex portions 

of the DEM on the other hand have points which share low 

height similarities. To mathematically indicate the degree of 

complexity of the local neighbourhood based on inter-height 

similarities, we analyse its corresponding local covariance 

matrix. Shape variation was extracted by applying Principal 

Component Analysis on the covariance measure of the point 

clouds around each point. The covariance was computed using 

the points neighbouring the keypoint candidate.  

 

Eigen-analysis of the covariance gives 3 eigenvectors eu and its 

corresponding eigenvalues λu, shown in Eq. 1. In a physical 

sense, the eu defines a local 3D orthogonal reference frame for 

the neighbourhood, whereas, λu defines the size of each eu. The 

size of λu represents the dispersion of the point’s neighbours in 

each of the 3 orthogonal axes defined by the local reference 

frame. 

 

        uuu

local

DEM eeCov                                            (1) 

 

where; u=(1,2,3); u is in ascending order of λ magnitude. 

 

The minimum λ0 of λu, is the surface normal of the keypoint 

candidate, i.e., the direction of minimal variation with respect to 

the local tangent plane on the 3D surface. The λ1 and λ2 are 

indicative of the deviation of points on the tangent plane. We 

use these eigenvalues to quantify an approximate surface 

curvature measure for the local DSM point cloud surface. 

Hence, we define surface curvature as the ratio of variance from 

the surface tangent plane, λ0, to the total variance,  

3

1u u , 

(Pauly et al 2002). 
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3.1.1 Keypoint scales estimation 

 

The surface curvature of every point (all of which are 

considered to be keypoint candidates at this stage) are computed 

using their neighbouring points. However, the extents of the 

neighbouring points as determined by a radius are 

undetermined. This is so since the scale factor between the 

UAV and TLS DSMs is an unknown parameter (along with the 

rotation and translation parameters). It is also critical to 

determine the appropriate set of neighbouring points around a 

keypoint when generating its descriptor for the latter matching 

Vertical UAV imagery 

UAV point clouds TLS point clouds 

 Structure from Motion 

3D Keypoint Extraction 

Establish descriptor region 

Generate descriptors (e.g. SIFT, SURF) for 

the point cloud UAV & TLS DSMs 

Match similar keypoint descriptors  

Apply 3D conformal transformation 

using corresponding keypoints 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-369-2015

 
370



 

phase. Thus, scale-invariant keypoints are very important. As 

illustrated in Figure 2, we address this problem by firstly 

estimating the curvature for all point clouds on a DSM. This is 

done at various radii values (i.e. various ‘scales’). Radii scales 

range from 0.1 to 0.5 with 0.05 increments on a normalized 

point cloud coordinate system between 0 to 1). The appropriate 

radius is the value at which the maximum curvature is attained. 

A query point is then deemed to be a keypoint if its curvature 

value is larger than those of all its neighbouring point clouds. 

Figure 2 illustrates the keypoint detection framework. 

 

 

 
 

Figure 2. Keypoint extraction pipeline 

 

 

3.2 Point description and matching  

Following the keypoint detection phase, we utilize the SURF 

descriptor (Bay et al. 2008) at each keypoint to facilitate the 

matching of the point features. Therefore, for every keypoint, a 

SURF descriptor is computed on the DSM height map. 

Similarly, existing descriptor implementation like the SIFT 

algorithm (Lowe, 2004) could also be alternatively used in such 

a case. The SURF descriptor is based on Haar wavelet filter 

statistics in the x and y image directions and can be a 64 

dimensional or 128 dimensional descriptor.  

 

The match for each keypoint is established by utilizing the 

Euclidean distances for their 1st and 2nd nearest neighbours in 

the descriptor feature space. This is referred to as the nearest 

neighbour distance ratio (NNDR) (Szeliski, 2010). If the NNDR 

tends to a value of 1, then the match is not very reliable since 

the disparity between the first best and second best matches are 

not very distinct. A small NNDR value represents a possible 

matching candidate. If NNDR is less than a set threshold then a 

match is accepted (we use 0.3 in our experiments). To confirm 

the initial point correspondences, we proceed to apply the 

RANSAC method (Fischler and Bolles, 1981) to filter outlying 

matches.  

 

Afterwards, a 3D conformal transformation, solving for the 

scale factor, rotational angles and translational shift between the 

UAV and TLS point cloud surfaces are computed. 

 

 

4. EXPERIMENTS & RESULTS 

 

4.1 Study area and datasets 

We test the presented method on a study area situated in North 

York, Ontario, Canada. The test site contained a single building 

surrounded by parking lot, vegetation and bare land. Vertical 

photography of the test site was collected by a geo-X8000 UAV 

and the terrestrial laser scans via an Optech ILRIS long range 

scanner (Figure 3). To generate the dense point clouds from the 

UAV imagery, we used the Agisoft software (Agisoft, 2015). 

 

 

 

                        
 

 

 

                            
 

 

   Figure 3. a) geo-X8000 UAV b) ILRIS scanner 

 

 

The method was prototyped in MATLAB programming 

language. To minimize the lengthy processing time, we 

downsampled the original point cloud density acquired from 

both the TLS and the UAV systems. 

 

 

4.2 Results 

Tables 1 and 2 show results achieved by the presented approach 

and those from of the reference parameters, respectively. The 

seven transformation parameters were estimated by manually 

selecting 4 point correspondences. The presented approach on 

the other hand has automatically determined 8 point 

correspondences (where the UAV DSM contained 13 keypoints 

and the TLS DSM had 17 keypoints). The derived parameters 

based on these 8 points closely resemble the reference 

parameters. Figure 4c shows the co-registration results of the 

UAV points (Figure 4a) with the TLS points (Figure 4b). The 

RMSE of the residuals from the automated method is 0.20 m, 

whilst that of the reference parameters is 0.27 m. The results of 

the automatically derived parameters can also be further 

improved by applying the Iterative Closest Point algorithm 

(Besl and McKay, 1992). 

 

 

 

 

 

 

a) 

b) 
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  Figure 4. a) UAV point clouds b) TLS point clouds 

c) Alignment result 

 

 

 

Table 1. Transformation parameters –Automated 

selection of corresponding points 

Parameters 

(automated) 

value σ 

Scale factor 45.47 4.6e-09 

ω (°) 7.31 0.00007 

φ (°) 22.1 0.00002 

κ (°) 15.2 0.00001 

tx (m) -34.29 0.0005 

ty (m) 

tz (m)                                                  

-38.51 

-17.98 

0.0015 

0.00005 

 

 

 

 

Table 2. Transformation parameters –Manual 

selection of corresponding points 

Parameters 

(manual) 

value σ 

Scale factor 44.66 3.1e-08 

ω (°) 7.79 0.00012 

φ (°) 23.3 0.00075 

κ (°) 13.9 0.00009 

tx (m) -35.11 0.0033 

ty (m) 

tz (m)                                                  

-39.03 

-17.44 

0.0004 

0.00009 

 

 

 

5. CONCLUSIONS AND OUTLOOK 

We presented an automated co-registration approach to 

integrate UAV and TLS DSMs point cloud. We begin by firstly 

extracting scale-invariant keypoints. Then apply the SURF 

descriptor to match the detected salient points. Our results are 

comparable with the reference parameters. Future work will 

look at developing novel descriptors for matching point features 

with the intention to improve the overall accuracies in the 

estimated rigid body transformation parameters. 
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