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ABSTRACT: 

 

In this paper, a framework for adjusting mobile laser scanning point cloud data to improve the accuracy is proposed by integrating 

high resolution UAV images and MLS. First, aerial triangulated images with a few high accuracy ground control points are taken as 

control information. Then, a hierarchical strategy is proposed for robust pairwise registration of feature points between point cloud and 

images, so as to find the deviation of the point cloud. In the next step, a shape-preserving piecewise cubic interpolating method is 

employed to fit the time dependent error model of the trajectory. Finally, experiments are given to prove the effectiveness of proposed 

framework. 

 

 

 

1. INTRODUCTION 

Recently, given the increasing need for smart city and location 

based services, the collection of urban spatial information and 

civil infrastructure modelling have become hot research topics in 

the photogrammetry field. Multiple sensors are employed to 

collect data from diverse directions to acquire more complete 

information. The MLS system was developed to collect high 

precision dense point clouds from a street view to fulfill the 

increasing need of street level modelling for real viewing, 

navigation, and location based services (Deren, 2006; Fischer and 

Gellersen, 2010). In addition, UAV is another very popular tool 

developing rapidly and used widely for collecting imageries from 

a top view.  

 

The MLS is a typical survey tool that combines laser scanners, 

and a position and orientation unit (POS) on a mobile platform. 

As a combined survey system, the accuracy of points collected 

by MLS suffers from numerous systematic and random errors. 

For a well calibrated system with stable laser sensors, the 

accuracy of POS plays the dominant role in final data quality. 

Regardless of the small influences from target reflectivity 

properties and laser-beam incidence angle, the accuracy of 

platform position and orientation derived from POS determines 

the overall accuracies of collected data (Skaloud and Lichti, 

2006). In urban area, the losing lock of GPS problem caused by 

dense trees, high buildings and tunnels will greatly influence the 

quality of mobile laser scanning data, often lasts but a short time, 

the shifts can reach up to meters in X,Y direction and Z direction 

(Haala et al., 2008). Other negative factors also affect the 

accuracy of the GPS unit, such as a weak GPS satellite 

constellation, inadequate reference GPS constellations, and 

improper route planning. To improve the accuracy of point 

clouds, ground control points are surveyed manually using 

traditional methods and then imported to the MLS post-

processing software to adjust the trajectory and point cloud, 

which is labour-consuming and time intensive. 

 

                                                                 
*  Corresponding author 
 

 

UAV is a kind of popular fly platform often embedded with light 

sensors to collect data from an overhead view. To fulfill 

surveying and mapping purposes, many post-processing modules 

and software were developed, to process UAV data, e.g. 

PhotoModeler Scanner and MICMAC (Deseilligny and Clery, 

2011). With the addition of high accuracy GCPs (Ground Control 

Points), the theoretical precision of computed object coordinates 

can reach centimetre accuracy (Eisenbeiss and Zhang, 2006; 

Nagai et al., 2009).  

 

To achieve complete data collection for urban infrastructure 

modelling, combining UAV images and MLS data for automatic 

extraction and reconstruction of urban infrastructure arouses the 

interest of researchers (Zhu et al., 2013). Extending beyond 

complete model construction, integrating the two kinds of data 

can improve the accuracy of the acquired data. To some degree, 

the measured feature points from stereo UAV images can serve 

as control points to adjust MLS data. The two data has 

characteristic of compensation, UAV providing global control 

information which could be used to geo-reference the mobile 

point cloud suffering from the lost lock problem in GPS. In this 

paper, we propose a method to automatically geo-reference a 

point cloud from mobile laser scanning data by integrating it with 

UAV images. Our contributions are as follows: 

1. A framework of adjusting mobile point clouds through 

UAV images automatically. 

2. A hierarchical strategy for robust pairwise registration of 

feature points between point clouds and images. 

 

The paper is organized as follows: the scheme for the briefly 

mentioned methodology is presented in detail in section 2. 

Section 3 presents experiments with accuracy evaluation using 

point cloud data from an urban environment. Conclusions and 

future work are given in Section 4. 
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2. METHOD 

2.1 Method Overview 

The basic assumption of our method is that the MLS data suffers 

from random errors of the GPS lost lock problem, UAV image 

could provide useful global control information to mitigate this 

problem. The whole procedure consists of three main phases, as 

shown in Figure 1. In the first phase, data pre-processing steps 

are performed, which include the Aero-Triangulation (AT) of 

UAV images based on GCPs, road area extraction from MLS 

data, height and intensity map interpolation. In the second phase, 

feature points are extracted from the road area based on intensity 

image, and then are registered to the UAV images by an edge-

based template matching method. In the registration procedure, 

we propose an outlier removal method. In the third phase, a shape 

preservation corrected model is employed to adjust the 

trajectories of mobile system, which is finally used to adjust the 

MLS point cloud data. 
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Figure 1. Processing-pipeline. Three phases: the data pre-

processing of images and point clouds data, the main procedure 

of pairwise registration, and adjustment of the point clouds data. 

 

2.2 Data Pre-processing 

Before data adjustment, the given MLS data and UAV data needs 

pre-processing. A MLS point cloud is subdivided into blocks, 

such as 80 * 80 meters. The pre-processing procedure contains 

three steps: road extraction from MLS point cloud, intensity 

interpolation and UAV images aerial triangulation. 

 

a) Road point extraction from MLS point cloud data. Road 

markings are always very clear and can be identified from the 

background in both MLS point cloud intensity data and UAV 

images. With sharp corners and strong colour contrast, road 

markings have reliable and stable corner point features to 

establish corresponding relationships between the ground and 

aerial observations. To extract road marking corner points from 

MLS intensity data, a filter algorithm is applied to remove non-

terrain points. In our experiment, we assumed that the trajectory 

of MLS system has a very stable relative height to the road, or 

the “ground”. Based on this assumption, the average height of 

neighbouring nodes of trajectory are taken as a threshold, points 

with timestamps between the nodal timestamp above the 

threshold will be removed. 

 

b) Interpolation of point cloud intensity data. To simplify the 

processing, the intensity information of unstructured point cloud 

should be interpolated into raster maps (Poullis, 2013). We 

employ the resolution of the intensity map as 0.04m, which 

corresponds to the average MLS data point cloud density of 

interesting area and represent more accuracy of single point 

information. For each block of 80m*80m, the intensity map 

I𝑥𝑦 = {i|(x, y)}  has 2000*2000 pixels. The height map Z𝑥𝑦 =
{z|(x, y)} is interpolated by the same method. 

 

c) Aerial Triangulation of UAV images 

The camera of the UAV is calibrated using IWitness software 

(Fraser and Hanley, 2004). The precise exterior orientation 

parameters for aerial images are obtained by MICMAC, an open 

source bundle adjustment software for automatic camera 

calibration and orientation of set of images, developed by IGN 

(Deseilligny and Clery, 2011). 

 

2.3 Pairwise registration of UAV images and point cloud 

2.3.1 Feature point extraction. Before the corresponding 

points finding between MLS to UAV images, seed points are 

extracted. The Harris operator is a classic and efficient corner 

detector, widely used for detecting corner points in image 

matching and registration (Yu et al., 2008). The intensity image 

is interpolated and an improved Harris operator (Zhu and Wu, 

2007) is applying to detect corner points. The detection result is 

shown as Figure 2. 

 
Figure 2. Feature points detected by the Harris operator from the 

intensity image. Red-crosses are the detected corner points, 

though there are many random noises in the intensity image. 

 

We must notice that the image characteristics of road marks in 

point cloud intensity data have intrinsic differences to that in the 

UAV images. The intensity value represents the received energy 

of laser beam reflection and UAV image record the reflection of 

nature visible light with diffusion effect by camera CCD. From a 

visual perspective, the edge of road marks of intensity data and 

UAV image are very clear and similar. Thus, we employ edges 

as the cues to instead corner to corner matching results. 
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2.3.2 Point matching using a local template. Edges in our 

method are extracted by classic Canny edge detector (Canny, 

1986). For processing edge based template matching, a new 

method is presented using distance and density to measure spatial 

and probabilistic distribution similarities. Given a seed point 

𝑝(𝑋𝑖 , 𝑌𝑖) , a small template image is firstly cropped from the 

intensity edge image with predefined window size. Then, we try 

to find the corresponding points from UAV images.  

 

Given a seed point 𝑞(𝑥𝑖 , 𝑦𝑖)  in an intensity image 𝐼  with m 

relative UAV images 𝐽 = {𝐼𝑗|𝑗 = 1,2, … 𝑚} , a corresponding 

𝑝(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) from the intensity image can be computed with the 

help of height map. Since each image has its position and 

orientation parameters, we can find serial points 𝑞(𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
), 𝑗 =

1,2, … , 𝑀  from the relative image group 𝐽  by ground point 

𝑝(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) with the help of photogrammetric collinear equation. 

Then the point sets 𝑞(𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
), 𝑗 = 1,2, … , 𝑀  are taken as 

candidate points group to match the ground seed points. For each 

point, a small image block is cropped from the UAV and intensity 

images, thus multiple stereo images are involved in seed point 

matching using this procedure. 

 

For each matching step, the centre of the template is simply 

moved over the matching image and the acceptability value is 

computed. The whole procedure for the template matching 

process is shown as Figure 3. In the first row of Figure 3-(a) is 

the template intensity image with a seed point in a cross marker 

and related searching UAV images with a corresponding 

projection marker. After edge detection process by Canny edge 

detector, Figure 3-(b) shows the corresponding edge images. 

Based on the edge template matching, Figure 3-(c) shows the 

template edge results in red over the searched images. Based on 

our method, the tie point matching results are shown as Figure 3-

(d) with a red marker. 

 
Figure 3. The procedure of template matching. 

 

2.3.3 Outlier removal.  For all matched point pairs, a MLS 

feature point 𝑝(𝑋𝑖 , 𝑌𝑖)  is observed by multiple images with 

corresponding points 𝑞(𝑥𝑖
k, 𝑦𝑖

𝑘), 𝑘 = 1,2, … 𝐾  in image 

coordinate space. Due to the inevitable occurrence of mismatches, 

RANSAC algorithm (Fischler and Bolles, 1981) is introduced to 

remove the outliers from matching results. 

 

The basic idea of the RANSAC outlier removing procedure is 

illustrated as Figure 4. Firstly, we pick two images and 

corresponding tie points randomly. Using the orientation 

information from the selected images and tie points, a ground 

point G is computed based on a forward intersection. Next, a 

reverse projection from G to the remaining image is performed 

to compute bias 𝑡𝑖, which is the Euclidean distance between the 

projected point (spot marker) and matched point (cross marker) 

in pixels. The details steps are listed below: 

1. Randomly choosing a pair of 𝑞(𝑥𝑖
k, 𝑦𝑖

𝑘), k = 1,2, … K. 

2. Generating the solution of forward intersection based on 

related orientation information and the chosen pair. 

3. Taking the solution as ground point and the orientation 

information of each, a new point in each image space is 

computed with collinear equation corresponding to the 

matched point. 

4. Comparing with the given threshold, the difference of the 

new point and matched point is accepted or rejected as an 

inlier and outlier. 

5. The process will repeat from step one to four until the 

previously set conditions are satisfied. 

6. Finally, the solution is output as a ground point (𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖
′) 

fitted by least mean square method. In addition, the outlier 

removing processing converts the points from image 

coordinates to geometric coordinates.  

 

 
Figure 4. (a) shows the result of template matching as tie 

points between the intensity map (the last one ) and UAV 

images with the cross marker. (b) illustrates the RANSAC 

procedure based on the result of template matching. G 

represents a ground point with chosen image 𝑆1  and 𝑆3 . 

𝑡𝑖 , i = 1,2,3  is the difference of a spot representing 

matched point and a cross representing the computed in 𝑆2, 

𝑆4, 𝑆5 respectively. 
 

(a) (c) (b) (d) 

𝑆2 𝑆3 𝑆1 𝑆4 𝑆5 

𝑡1 
𝑡2 𝑡3 

(b) 

(a) 
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2.3.4 Point cloud adjustment.  The errors of the position 

observations of the POS system are time dependent (Zhang et. al., 

2012). From the LiDAR geo-reference equation, the coordinate 

bias [∆𝑥, ∆𝑦, ∆𝑧] of a point is decided mainly by POS error. After 

outlier removal processing, a set of matched point pairs is 

acquired which contain the coordinate bias at a certain time. 

 

These points, which will be used as the key points for point cloud 

adjustment, allocate along the trajectory of MLS system with a 

non-uniform distributions. Each point represents a point with 

independent deviation vector. That means a smooth interpolation 

function is needed to adjust the point cloud. In this paper, we 

introduce a Shape-Preserving Piecewise Cubic Hermite 

Interpolating (SPPCHI) method to generate smooth trajectory 

adjustment parameters, originally proposed by (Delbourgo and 

Gregory, 1985). SPPCHI is a first order approximation accuracy 

interpolation method and its interpolation values between the 

maximum and minimum of nodes are more stable as compared 

to the traditional high degree polynomial function. The error 

model function of time is generated in the 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 directions 

separately. Knowing the value of GPS time stamp 𝑡, the position 

observation error of each point (∆𝑋(𝑡), ∆𝑌(𝑡), ∆𝑍(𝑡))  can be 

computed out. Thus, the new point coordinate 

( 𝑋 ‘(𝑡) ,  𝑌’(𝑡) ,  𝑍‘(𝑡))  after correcting can be computed using 

formula: 

{

𝑋 ’(𝑡) =  𝑋(𝑡) + ∆𝑋(𝑡)

𝑌‘(𝑡) = 𝑌(𝑡) + ∆𝑌(𝑡)

𝑍’(𝑡) = 𝑍(𝑡) + ∆𝑍(𝑡)

                              (1) 

Where 𝑋(𝑡) is the original coordinate in 𝑋 direction at time 𝑡. 

∆𝑋(𝑡) and 𝑋′(𝑡) are the correction and the new point. For the Y 

and Z direction, the processing steps are similar. 

 

3. EXPERIMENT 

3.1 Test Data 

The experimental data was collected in 2012 at the National 

University of Singapore (NUS) with high buildings and dense 

trees. The data includes both a MLS point cloud and aerial images 

from UAV. The point cloud data set was obtained by the RIEGL 

VMX 250 system with two VQ-250 laser scanners. The area of 

an 80m*80m data block was interpolated into 2000*2000 image 

using an average 0.04 meter grid size, which means the entire 

range and intensity of values of each point was preserved with 

very little loss of information from rasterization. Figure.5 shows 

the whole test area and a part of the intensity map. 

 
Figure 5 shows the overview of point cloud data in NUS. Right 

figure is the interpolated intensity image, which shows very clear 

land marks. 

 

 The corresponding aerial images were collected using the 

AscTec Falcon 8 octocopter system with an off-the-shelf camera 

Sony Nex-5. After data cleaning, 787 of 857 images are selected 

to be test data, depicted in Figure 6 left as green. The average 

flight height was 120 m and the average ground resolution was 

about 0.05m. Bundle adjustment was conducted based on 23 of 

total 34 ground control points surveyed using GPS with around 

0.02m accuracy. The rest 11 control points were used as check 

points to evaluate the bundle adjustment accuracy. The RMSE of 

coordinate residues of the check points was 0.046m, 0.053m in 

X, Y direction and 0.093m in the Z direction, as shown in Figure 

6 right. 

 
Figure 6. The left is the layout of the whole NUS image blocks. 

The right shows the residual of check points after Bundle 

Adjustment. 

 

3.2 Data Adjustment 

After pairwise registration, the position deviation of each point 

were acquired in X, Y and Z directions. According to the 

approach detailed in section 2.4, the trajectory was adjusted by 

SPPCHI using the detected biases points. Then, the new 

trajectory was used as the source for the point cloud adjustment 

procedure. According equation (1), new coordinates were 

computed and assigned to each point. The difference of the 

trajectory before and after interpolation is shown in Figure 7. The 

colour difference denotes different trajectory deviation values. In 

this figure, we see that GPS inaccuracy happens very often along 

the trajectory. In this experiment, the deviations were smaller 

than 0.7m in most areas, but there are many areas bigger than 1.0 

meters, especially the areas with high buildings and dense trees. 

 
Figure 7. The new trajectory coloured by the magnitude of the 

sum of X, Y and Z direction. 
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3.3 Accuracy Evaluation 

To evaluate the accuracy of the processed data, a few uniformly 

distributed check points were selected manually from the original 

point clouds data set using TerraScan software, as well as 

corresponding points in corrected data. Control points are 

measured manually using LPS software from UAV stereo images 

with AT processing. The root mean square value of the 

differences between check points and control points is calculated 

before and after the trajectory correction. 

 

 
(a) 

 
(b) 

Figure 8. (a) Differences between control points and check 

points for the unadjusted data (RMS-△X=0.130m, RMS-

△Y=0.211m, RMS-△Z=0.467m). (b) Difference between 

control point and check point from corrected data (RMS-

△X=0.086m, RMS-△Y=0.063m, RMS-△Z=0.106m). 
 

Figure 8-(a) shows the differences between check points and 

control points from the unadjusted data. It is very clear that there 

are some points of big differences. The vertical variance (0.467m) 

is rather higher than the horizontal variance (0.130m and 0.211m), 

consistent with RTK surveying experience where the precision of 

the vertical is double the precision of position obtained by the 

RTK system. Figure 8-(b) shows the results after point cloud 

correction. The variance of position of check points in the X and 

Y direction are 0.086m and 0.063m, in the vertical direction 

about 0.106m. It greatly improved the quality of original point 

cloud without spending much labour and time on GPS survey 

field work. This procedure can automatically register the original 

point cloud to the UAV images, providing a good basis for future 

complete modelling processing. 

 

4. CONCLUSION 

In this paper, we propose a novel framework to automatically 

geo-reference MLS point clouds to UAV data, which can 

improve the accuracy of MLS point cloud data. In the proposed 

method, all the extracted corresponding feature points on white 

road markings are processed robustly to guarantee the quality of 

extracted control points using a hierarchical strategy. The 

experimental results of registration demonstrate that the proposed 

method is practical for urban area data registration using road 

markings between images and point clouds. Another benefit of 

our work is that it reduces labour intensive field work of control 

point surveying. In MLS surveying for dense urban areas, the 

average distance between two control points is typically about 

100~200 meters. Thus, only a few control points are needed to 

adjust the MLS point cloud using UAV images, rather than a 

hundred control points along the road, collected under field 

conditions. 

 

The robustness of our proposed automatic method depends on the 

control point matching results. If the feature differences between 

an image and intensity map are too large to obtain satisfactory 

point matching results, the robustness of our method will be 

influenced. Undoubtedly, such a procedure could improve the 

quality of data. But, by addressing the symptoms of problem 

rather than its cause, does not allow one to fully realize model 

accuracy in MLS system technology. 
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