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ABSTRACT: 

 

Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial 

Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an 

acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS 

measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-

Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system 

due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. 

The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned 

problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. 

The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.  

 

 

INTRODUCTION 

Accuracy requirement of Location-Based Telematics 

Services (LBTS) for land navigation mostly depends on 

Global Positioning System (GPS) and Global Navigation 

Satellite Systems (GNSS) to obtain a useful navigational 

solution. GNSS receivers require proper operating conditions 

for providing a valid and precise solution. Whereas GNSS 

operation is affected by Line of Sight (LOS) signal 

propagation and condition, resulting in a non-effective GNSS 

solution while driving in harsh environments, such as in 

urban canyons, under dense foliage or other so-called GPS-

denied environment (i.e. indoor parking, tunnel, etc.). As a 

matter of fact, these harsh environments significantly reduce 

the efficiency of GNSS [1, 2]. 

Advanced commercial vehicle services, such as car insurance 

companies and car assistance services (OnStar, Car-net, etc.), 

need to overcome the mentioned GNSS problems to provide 

higher customer supports and quality of services. An 

encouraging solution to achieve a high-precision navigation 

system, at all time, is to fuse the GPS data with low-cost 

Micro-Electro-Mechanical Systems (MEMS)-based Inertial 

Measurement Units (IMUs), which are self-governing 

navigation devices. In fact, an GPS/INS integrated system 

can provide a state-of-the-art land navigation system with a 

better efficiency compared with GPS or INS alone.  

The conventional Extended Kalman Filter (EKF) has been 

extensively employed for the integration of INS with GPS, as 

it can determine the optimal estimation of the system state 

vector with minimum mean and square errors [3-6]. For good 

results, an EKF needs to perform under appropriate defined 

errors and dynamic models notably for its initialization 

process, which requires the knowledge and adequate noise 

modeling. Also and to provide a continuous efficient 

estimation, EKF requires a good background on the dynamic 

process of the system and measurement model based on 

white Gaussian noises. In addition, the accuracy of MEMS-

based IMUs is greatly damaged by their long and short terms 

drift and bias errors. This problem impacts the navigation 

systems’ performance, when exploiting the traditional EKF in 

land vehicular navigation [7]. Moreover, the main problem of 

the EKF is the covariance divergence due to modeling error 

in EKF, which makes infinite or very large the bound of the 

actual estimate error covariance [8]. 

To solve the covariance divergence in EKF, two solutions are 

mainly considered. The first one is employing the un-

modeled state which increases the complexity of the system 

for its computation [8]. The second is employing the process 

noise to improve the confidence when using white Gaussian 

noise so that it can prevent the EKF to reject new 

measurements for estimating the state vector [7, 9, 10]. This 

paper suggests using Fuzzy Inference System (FIS) based on 

the second solution, which is employed for self-tuning the 

EKF parameters by observing the covariance measurements. 

The proposed hybrid FIS-EKF model is exploited to develop 

a low-cost and low-processing power GPS/INS integrated 

navigation system for modern land vehicular navigation 

systems efficient in challenging environments. This new 

technique will open the door to new navigation capabilities to 

expand the markets of automotive navigation services. FIS is 

exploited to predict the error states of the EKF based on a 

Covariance Matching Estimation Technique (COMET). The 

paper is organized as follows: Section 2 presents the 

GPS/INS integration process used in this paper. Section 3 

explains the proposed model to fuse the INS and GPS 

measurements in detail. Sections 4 and 5 present the 

simulation results and the conclusion of this paper, 

respectively. 

2. GPS/INS INTEGRATION PROCESS 

A. Loosely coupled GPS/INS integration 

It is well known that integration of INS and GPS through 

loosely coupled structure, not only maintains independency 

and redundancy of stand-alone GPS and INS solutions; but it 

can also provide more robustness for the navigation solution 

[11]. Loosely coupled integration presents a closed-loop 
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architecture that allows the correction of certain errors of the 

INS. This structure is generally preferable in the GPS/INS 

integration as being composed of three distinct entities, 

which are the stand-alone GPS solution, the stand-alone INS 

solution and the GPS/INS coupled solution. This architecture, 

presented in Figure 1, is shared by several authors [12-14]. In 

this architecture, a filter is used to fuse the GPS and INS 

solutions (position and velocity) and to estimate some system 

error’s parameters. The estimated parameters correspond to 

the errors of position, velocity, and attitude of the INS 

solution. 

Tracking 

Loop
GPS Filter

GPS Receiver

IMU

INS mechanism

3-axis

ACC

3-axis 

GYRO

GPS/INS Filter

GPS Antenna

 
Figure 1. Loosely architecture of GPS/INS integration 

 

In general, the filters in Figure 1 are EKFs; which are 

recognized as the most conventional method to estimate the 

navigation systems. The derivation of the error model to be 

applied in the EKF starts with the construction of the full 

scale true error models, whose order is decided from the 

complexity of the problem [15]. The error model in the 

dynamical model includes three state errors of position, three 

for the velocity, and three for the attitude, augmented by 

some sensor state errors. GPS/INS integration reduces only 

the long-term errors with this error model. Thus, the 

remaining error budget is mainly affected by short-term error 

sources [16]. 

B. Extended Kalman Filters (EKF) process 

The EKF is an estimator method, which can distinguish the 

problem of estimating the state of a controlled process. It is 

defined by the following linear dynamic model: 

𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑤𝑘−1 (1) 

 

with a measurement that is: 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (2) 

 

where 𝐹𝑘, 𝐺𝑘 and 𝐻𝑘 are the state transition, the system noise 

coefficient and the design matrices, respectively, 𝑥𝑘 is the 

error state vector, and 𝑧𝑘 is the measurement vector. The 

random variables 𝑤𝑘 and 𝑣𝑘 represent the system and 

measurement noises, respectively, with uncorrelated and zero 

mean random processes: 

𝐸[𝑤𝑘𝑣𝑗
𝑇] = 0      ∀𝑖, 𝑗 ∈ ℝ  

𝑤𝑘~ 𝒩(0, 𝑄𝑘) 
𝑣𝑘~ 𝒩(0, 𝑅𝑘) 

 

(3) 

 

 

and the covariance matrices are: 

𝐸[𝑤𝑘𝑤𝑗
𝑇] = {

𝑄𝑘   , 𝑗 = 𝑘
0   , 𝑗 ≠ 𝑘

 
(4) 

𝐸[𝑣𝑘𝑣𝑗
𝑇] = {

𝑅𝑘    , 𝑗 = 𝑘
0   , 𝑗 ≠ 𝑘

 
(5) 

 

Correction

Prediction

kK

kH

kZ

)(ky

)(ˆ kx

1
ˆ

kx

kx̂

1 k

Unit 

Delay


 



 
Figure 2. A block diagram of Extended Kalman Filter 

 

In reality, the system noise covariance 𝑄𝑘, and measurement 

noise covariance 𝑅𝑘  matrices might change with each time 

step. However, they are often assumed to be constant in EKF 

to facilitate the implementation [15]. There are two steps in 

EKF process. A block diagram of EKF is shown in Figure 2. 

The first step is the prediction of the system model: 

𝑥̂𝑘̅ = 𝐹𝑘−1𝑥̂𝑘−1 (6) 

𝑃𝑘̅ = 𝐹𝑘,𝑘−1𝑃𝑘−1𝐹𝑘−1
𝑇 + 𝐺𝑘−1𝑄𝑘−1𝐺𝑘−1

𝑇  (7) 

 

where, 𝑥̂𝑘̅ and 𝑃𝑘̅ are the time-propagated state estimates and 

covariance. The second step is the measurement update of the 

system model: 

Kalman gain: 𝐾𝑘 = 𝑃𝑘̅𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘̅𝐻𝑘

𝑇 +  𝑅𝑘)
−1 (8) 

Covariance 

update: 
𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘̅ (9) 

State update: 𝑥̂𝑘 = 𝑥̂𝑘̅ + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘̅) (10) 

 

C. Fuzzy Inference Systems (FISs) 

Fuzzy Inference Systems (FISs) is a rule-based expert 

method for its ability to mimic human thinking and the 

linguistic concepts rather than the typical logic systems [17]. 

The advantage of the FIS appears when the algorithm of the 

estimation states become unstable due to the system high 

complexity. FIS are also used for the knowledge induction 

process as they are  applicable estimators for general purpose 

[18].  

A FIS architecture includes three parts: fuzzification, fuzzy 

inference and defuzzification. The first part is responsible to 

convert the crisps input values to the fuzzy values, the second 

part formulates the mapping from the given inputs to an 

output, and the third part converts the fuzzy operation into 

the new crisp values. The FIS are able to convert the 

inaccurate data to normalized fuzzy crisps which are 

represented by the ranges of possible values, Membership 

Functions (MF) and the confidence-rate of the inputs. In 

addition, the FIS are capable to choose an optimal MF under 

certain convenient criteria meaningful to a specific 

application. The deterministic output of FIS and its 
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performance depend on the effective fuzzy rules, the 

considered defuzzification process and the reliability of the 

MF values [19, 20]. 

In Fuzzy theory, components are referred to a range of values 

between 0 and 1. It is in contrast to crisp sets where a 

component is either in a set or not in the set.  The range of 

these values expresses the MF components in the FIS. 

Mamdani and Sugeno are the two practical FIS types which 

are used in several studies [21-24]. The main difference 

between these two fuzzy algorithms is based on the process 

complexity and the rule definition. Another important aspect 

to take into consideration is that Mamdani needs more 

processing time than Sugeno. In low signal to noise (SNR) 

scenarios, Mamdani type acts more robustly compared to 

Sugeno. Sugeno type provides also less flexibility in the 

system design compared to the Mamdani type. In general, 

Mamdani type is more efficient and accurate than Sugeno 

type [21, 22]. All those reasons have motivated us to use the 

Mamdani type (see Figure 3) to design the fuzzy-part of the 

proposed GPS/INS integration model.  

INPUT MFs OUPUT MFs

MAMDANI 
TYPE

 
Figure 3. General overview of FIS using Mamdani type  

3. PROPOSED ADAPTIVE FIS-EKF SYSTEM 

Two different approaches of adaptive Kalman filtering, 

namely Innovation Adaptive Estimation (IAE) and Multiple 

Model Adaptive Estimation (MMAE), are considered by 

several research groups [20, 25, 26]. These two approaches 

are based on COMET, which uses updated statistical data. 

This paper employs the IAE concept in the fuzzy part of the 

proposed model. 

The dynamic characteristics of the vehicle motion in the body 

frame to the navigation frame are the bases of the EKF 

process. The FIS can be exploited to increase the accuracy 

and the robustness of the EKF as well as preventing its 

divergence, in the tuning phase of EKF, especially in poorly 

designed geometric and mathematical models. Because, these 

models in the EKF, may lead to the divergence. Hence, FIS is 

used as a structure for identifying the dynamical variations 

and implementing the real-time tuning of the nonlinear error 

model. It can provide a good estimation to maintain the 

accuracy and the tracking-capability of system. Figure 4 

depicts how the proposed hybrid FIS-EKF model performs as 

the ubiquitous navigation system. 

The proposed FIS model is based on the IAE and innovation 

process of the covariance matrix for the input of the FIS as 

well as the difference of the actual covariance matrix and the 

estimated covariance matrix. Figure 5 shows the proposed 

FIS overview that is used in this paper. The estimated 

covariance matrix based on the innovation process is 

computed partly in the EKF by: 

𝑆̂𝑘 =  𝐻𝑘𝑃𝑘̅𝐻𝑘
𝑇 +  𝑅𝑘 (11) 

 

where 𝑆̂𝑘 and 𝐻𝑘 represent the estimated covariance and the 

design matrices, respectively. 𝑃𝑘̅ and 𝑅𝑘 are previous 

covariance update and the measurement noise covariance 

matrices. The actual covariance matrix (𝛾) according to [27] 

can be presented by: 

𝛾𝑘 =
1

𝑊
∑ (𝑧𝑖 − 𝐻𝑖𝑥̂𝑖̅) × (𝑧𝑖 − 𝐻𝑖𝑥̂𝑖̅)

𝑇

𝑘

𝑖=𝑘−𝑊+1

 

 

(12) 

 

where 𝑊 is the window size which is given by the moving 

window technique. It is chosen experimentally in this paper 

as 𝑊 = 25. So, the difference between the actual and 

estimated covariance matrices (𝜀) can be presented by: 

𝜀𝑘 = 𝛾𝑘 − 𝑆̂𝑘  

=
1

𝑊
∑ (𝑧𝑖 − 𝐻𝑖𝑥̂𝑖̅) × (𝑧𝑖 − 𝐻𝑖𝑥̂𝑖̅)

𝑇

𝑘

𝑖=𝑘−𝑊+1

− 𝐻𝑘𝑃𝑘̅𝐻𝑘
𝑇 +  𝑅𝑘 

 

(13) 

In fact, the value of 𝜀 can display the level of divergence 

between the actual and the estimated covariance matrices. 

This value depicts the level of the alteration in the vehicle 

dynamic based on the related covariance matrices. When the 

value of 𝜀 is close to zero, the estimated and the actual 

covariance matrices will be very similar and the absolute 

value of the 𝜀 can be neglected. However, if the value of 𝜀 is 

not near to zero (smaller or greater than zero), an adaptation 

is considered in the algorithm and the value of 𝑅𝑘 in 

Equation (11) should be adjusted to compensate this 

difference.  

The proposed rules assessment according to the difference 

between the actual and the estimated covariance matrices is 

described as three scenarios of MF: 
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Figure 4. The proposed hybrid FIS-EKF model in navigation 

system 
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1) If the value of 𝜀 is higher than zero, then the value of R𝑘 is 

turned down in accordance with the value of δR𝑘; 

2) If the value of the 𝜀 is less than zero, then the value of  

R𝑘  is turned up in accordance with the value of δR𝑘;  

3) If the value of 𝜀 is close to zero, then R𝑘 is unchanged. 

 

where, δR𝑘 = R𝑘 − R𝑘−1 . Before using the value of δR𝑘 in 

the fuzzy controller, they should be fuzzified in the linguistic 

term using the related MF. The parameter δR𝑘 in Figure 6(a) 

is represented by the five linguistic terms, namely ‘I1’, ‘I2’, 

‘I3’, ‘I4’, and ‘I5’.  

Figure 6(a) explains the grade of the membership parameter 

in the five fuzzy sets. For example, if δR𝑘 is close to zero, 

the grade of MF is shown with I2 in the FIS. As the degree of 

MF in the fuzzy set is I1 or I4, it approaches to minus one. 

However, when parameter of δR𝑘 is one, there is a 

progressive transition from I2 to I3 or I5, which is performed 

by the overlapping period in Figure 6(a). Then, the different 

values of this period are referred to both fuzzy sets with 

various grades of membership functions. 

 

 
(a) 

 
(b) 

Figure 6. Membership Functions (MF) of inputs: (a) Value of 

𝜀 (b) Value of δ𝜀. 

 
Figure 7. Membership Functions (MF) of output (δR𝑘) for 

proposed FIS 

 
Figure 8. The rules builder in proposed FIS-part 

In addition, after rewriting Equation (11) using Equation (7), 

we have: 

𝑆̂𝑘 =  𝐻𝑘(𝐹𝑘,𝑘−1𝑃𝑘−1𝐹𝑘,𝑘−1
𝑇 + 𝐺𝑘−1𝑄𝑘−1𝐺𝑘−1

𝑇)𝐻𝑘
𝑇

+  𝑅𝑘 

(14) 

which shows that if the R𝑘 is perfectly observed, variation in 

𝑄𝑘 can make a change in 𝑆̂𝑘 directly. So, with the observation 

of the mismatch between the actual and the estimated 

covariance matrices, an augmentation or reduction is 

essential for 𝑄𝑘. The proposed rules assessment for this 

purpose is described as two MF of FIS: 

1) If 𝜀𝑘−𝜀𝑘−1 = 0, then 𝑄𝑘 will be unchanged; 

2) If 𝜀𝑘−𝜀𝑘−1 ≠0, then 𝑄𝑘 will be changed in accordance 

with the value of δ𝑄𝑘. 

where δ𝑄𝑘 = 𝑄𝑘 − 𝑄𝑘−1. The related MF are shown in 

Figure 6(b) with ‘II1’,‘II2’, ‘II3’,‘II4’ and ‘II5’.  ‘II1’ and 

‘II2’are used when the value of 𝜀𝑘 is lower than zero. II3 is 

employed when the value of 𝜀𝑘 is zero. II4 and II5 are 

considered as the value of 𝜀𝑘 is greater than zero. 

The MF of the output for the proposed FIS model in order to 

match the covariance matrix is presented in the Figure 7. The 

output is the value of δR𝑘 which changes from –1 to 1. 

Moreover, it is fuzzified in seven levels from O1 to O7. 

These seven levels are important to differentiate between the 

likelihood levels. Figure 8 depicts the rules builder of the 

proposed FIS part. In fact, the rules builder defines the 

relationships between the two inputs and the outputs of the 

proposed model. Figure 9 presents the result of the rules 

builder in three dimensions. This figure shows that a change 

of the values of 𝜀 and δ𝜀 inputs affects the value of the output 

δR𝑘. The next section presents the performance of the 

proposed FIS/EKF within simulation experiments. 

 
Figure 9. Variation of 𝛅𝑅𝒌 (Output) based on the change of 

the values of 𝜀 and 𝛿𝜀 (Inputs 1 and 2) 

 

4. SIMULATION EXPERIMENTS AND ANALYSIS 

To evaluate the performance of the proposed GPS/INS 

integration model, simulation results of the FIS/EKF method 

are compared with those obtained from conventional 

GPS/INS integration method. For the demonstration of the 

proposed model, a loosely coupled GPS/INS integration in 

two-dimension is considered to reduce the overall cost and 

complexity of the navigation system (see Figure 10). The 

error state related to the two-dimensional inertial navigation 

system in this paper can be presented as: 

 

𝛿𝑥 = [𝛿𝑛 𝛿𝑒 𝛿𝑣𝑛 𝛿𝑣𝑒 𝛿𝜓]𝑇 (15) 

𝛿𝑥 =

[
 
 
 
 

𝑣𝑛
𝑣𝑒

𝐶𝑜𝑠(𝜓)𝑎𝑥 − 𝑆𝑖𝑛(𝜓)𝑎𝑦

𝑆𝑖𝑛(𝜓)𝑎𝑥 + 𝐶𝑜𝑠(𝜓)𝑎𝑦

𝜓𝑟 ]
 
 
 
 

 

 

 

(16) 
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where 𝛿𝑛 and 𝛿𝑒 are the north and the east position errors, 

and 𝛿𝑣𝑛 and 𝛿𝑣𝑒 are the north and the east velocity errors, 

respectively.  𝛿𝜓 represents the heading error. [𝑎𝑥 𝑎𝑦] and 

𝜓𝑟  show the measured accelerations and yaw-rate in body 

frame. 

North

EastYa

Xaψ 

 
Figure 10. Two-dimensional navigation system 

The vehicle trajectory was generated using the MATLAB 

Software Satellite Navigation toolbox in different time 

intervals  and motions, which are presented in Figure 11. The 

initial location is defined as (0, 0) m in local frame. Then 

three main time intervals are considered for the straight and 

circle motions of the trajectory. The details of the trajectory 

are described in Table 1. The vehicle is simulated to drive 

with a constant speed of 4.5 𝜋 𝑚/𝑠. 

Table 1. Definition of the trajectory 

Time segment (s) Motion 

[0-1200] Straight  

[1201-2400] counter-clockwise circle 

[2401-3600] Straight  

Tree main points are considered for GPS availability signals 

in the defined scenario. Fist, satellite positions are simulated 

without different errors; because it is needed a perfect 

reference to validate the proposed FIS/EKF within simulation 

experiments. It is called ‘Perfect situation of GPS’ in this 

paper. Second, satellite constellations are generated in the 

present of different error sources like multipath, clock errors, 

atmospheric errors and receiver noise. Most of these error 

sources are neglected, while, multipath and receiver noise 

cannot be disregarded in second scenario. It is called ‘Normal 

situation of GPS’ that maximum GPS unavailability is five 

seconds. Third, during the trajectory, ten obstructed segments 

were considered and introduced in GPS signals. It is called 

‘bad situation of GPS’ which are shown with the circle pink 

numbers in Figure 11. Table 2 shows the defined duration, 

start point and stop point of each GPS signal outage (it is 

assumed that right after this duration, the GPS position is 

again available). Minimum and maximum defined durations 

are 48 s and 97 s. This is used to demonstrate the system 

performance in severe environment (urban canyons, 

overpasses, tunnels, and indoor parking). The update rate of 

the GPS for all situations is one second.  

There are different stochastic errors in INS, which are 

modeled by different error states like biases and drifts of 

accelerometers and gyroscopes. However, low-cost INSs 

augmented by the modeled noises, cannot consistently 

perform as a ubiquitous navigator; especially in long GPS 

absence. Therefore, a model-free method can solve the 

problem of noise modeling in low-cost INSs. The assumed 

INS errors in this paper are summarized in Table 3. 

 

Figure 11. Trajectory in three main time-segments due to the 

dynamics characteristic. 

Table 2. Definition of the GPS outages based on their 

durations in the trajectory. 

Outages (#) Period (s) Start point (s) Stop point (s) 

1 62 17 79 

2 60 296 356 

3 88 590 678 

4 90 896 986 

5 88 1,202 1290 

6 92 1,510 1602 

7 97 1,795 1892 

8 83 2,160 2243 

9 68 2,810 2878 

10 48 3,230 3278 

Table 3. Definition of the INS errors 

Parameters Value 

𝐴𝑐𝑐𝑥 -bias 8 g 

𝐴𝑐𝑐𝑦 -bias 8 g 

Gyr-bias 0.15 deg/s; 

Acc-noise 0.1 m/s2 

Gyr-noise 0.1 °/s2 

 

Figure 12 shows the results in normal situation of GPS where 

there is no GPS outage more than five seconds. Figure 14 (a) 

presents a comparison of Root Mean Square Errors (RMSE) 

between EKF and the proposed hybrid FIS-EKF model in 

normal situation of GPS. As it is shown in this figure, the 

proposed model attenuates the errors by 10  % and 11.28 % 

in the east and the north position, respectively, compared to 

the traditional EKF when the GPS is working in normal 

situation. Also, the usage of the FIS-EKF reduces the east 

and the north velocity errors as well as the heading error by 

approximately 16.2 %, 27.9 % and 12 %, respectively.  

Figure 13 depicts the errors of the conventional EKF and 

proposed hybrid FIS-EKF model during the ten assumed 

outages. Figure 14 (b) presents a comparison of RMSEs 

between EKF and the proposed hybrid FIS-EKF model.  

This figure obviously illustrates the significant improvement 

of navigation solution when using the proposed FIS-EKF 

model. It is observed that, after applying FIS-EKF, errors 

were decreased by 48.48 % and 49.72 % in the east and north 

positions compare to EKF. Furthermore, the proposed model 

presents the enhancement in the navigation performance for 

the east and the north velocity as well as the heading by 

51.56 %, 49.02 % and 72.91 %, respectively. 
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Figure 12. Position, velocity, and heading errors in normal 

situation of GPS 

 

 

 
Figure 13. Position, velocity, and heading errors during the 

bad situation of GPS 

 
(a) 

 
(b) 

Figure 14. Comparison of position and velocity RMS errors 

via two approaches: EKF and FUZZY-EKF (a) Normal 

situation of GPS; (b) Bad situation of GPS 

 

5. CONCLUSION 

This paper has proposed the improvement of standard loosely 

coupled GPS/INS integration based on a hybrid EKF and a 

fuzzy inference system. The proposed model improves the 

performance of the navigation system, whereas the traditional 

EKF needs a priori knowledge of the system. As shown by 

the simulation experiments, the traditional EKF does not 

perform well in GPS outages, especially using low-cost IMU. 

Thus, the proposed FIS-EKF is exploited to increase the 

accuracy and the robustness of the EKF as well as to prevent 

the divergence in the EKF tuning process due to poorly 

design of the geometric models. The proposed FIS model is 

based on the IAE and innovation process of the covariance 

matrix as the input of the FIS, as well as the difference of the 

actual covariance matrix and the estimated covariance matrix. 

The major benefit of the proposed model is that the 

positioning accuracy of this model is increased compared to 

usual EKF-based integration. The main reason is that the 

estimated value of the covariance matrix is adapted to its 

actual value in the proposed hybrid FIS-EKF model. The 

results confirmed that higher accuracy is achieved using 

proposed hybrid FIS-EKF model compared to EKF-alone. 

The next work will consist to verify it viability with real GPS 

and IMU measurements acquired in real harsh environment. 

ACKNOWLEDGEMENTS  

This research is part of the project entitled “VTADS: 

Vehicle Tracking and Accident Diagnostic System”. This 

research is partially supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC), École de 

technology supérieure (ÉTS) within the LASSENA 

Laboratory in collaboration with two industrial partners 

namely iMetrik Global Inc. and Future Electronics.  

REFERENCES 

[1] N. Alam, A. T. Balaei, and A. G. Dempster, "A 

DSRC Doppler-based cooperative positioning 

enhancement for vehicular networks with GPS 

availability," Vehicular Technology, IEEE 

Transactions on, vol. 60, pp. 4462-4470, 2011. 

[2] G. Taylor, J. Li, D. Kidner, C. Brunsdon, and M. 

Ware, "Modelling and prediction of GPS 

availability with digital photogrammetry and 

LiDAR," International Journal of Geographical 

Information Science, vol. 21, pp. 1-20, 2007. 

[3] W. Zongyuan, L. Huanzhang, Z. Shuanghong, and 

S. Feng, "The study of square root cubature 

Kalman smoother and its application on INS/GPS 

integrated navigation," in Mechatronics and 

Automation (ICMA), 2014 IEEE International 

Conference on, 2014, pp. 1827-1832. 

[4] L. Zhao, H. Qiu, and Y. Feng, "Study of Robust 

Filtering Application in Loosely Coupled INS/GPS 

System," Mathematical Problems in Engineering, 

vol. 2014, 2014. 

[5] M. S. Grewal, A. P. Andrews, and C. G. Bartone, 

Global Navigation Satellite Systems, Inertial 

Navigation, and Integration: John Wiley & Sons, 

2013. 

[6] P. D. Groves, Principles of GNSS, inertial, and 

multisensor integrated navigation systems: Artech 

House, 2013. 

[7] D.-J. Jwo and F.-I. Chang, "A fuzzy adaptive 

fading Kalman filter for GPS navigation," in 

Advanced Intelligent Computing Theories and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-75-2015

 
80



 

Applications. With Aspects of Theoretical and 

Methodological Issues, ed: Springer, 2007, pp. 

820-831. 

[8] M. R. Taha, A. Noureldin, and N. El-Sheimy, 

"Improving INS/GPS positioning accuracy during 

GPS outages using fuzzy logic," in Proceedings of 

the 16th International Technical Meeting of the 

Satellite Division of The Institute of Navigation 

(ION GPS/GNSS 2003), 2001, pp. 499-508. 

[9] Q. Xia, M. Rao, Y. Ying, and X. Shen, "Adaptive 

fading Kalman filter with an application," 

Automatica, vol. 30, pp. 1333-1338, 1994. 

[10] K. H. Kim, J. G. Lee, and C. G. Park, "Adaptive 

two-stage EKF for INS-GPS loosely coupled 

system with unknown fault bias," Positioning, vol. 

1, 2006. 

[11] G. T. Schmidt and R. E. Phillips, "INS/GPS 

integration architectures," DTIC Document2010. 

[12] G. Falco, G. A. Einicke, J. T. Malos, and F. Dovis, 

"Performance analysis of constrained loosely 

coupled GPS/INS integration solutions," Sensors, 

vol. 12, pp. 15983-16007, 2012. 

[13] J. G. Ryan and D. M. Bevly, "On the Observability 

of Loosely Coupled Global Positioning 

System/Inertial Navigation System Integrations 

With Five Degree of Freedom and Four Degree of 

Freedom Inertial Measurement Units," Journal of 

Dynamic Systems, Measurement, and Control, vol. 

136, p. 021023, 2014. 

[14] I. Skog and P. Handel, "Time synchronization 

errors in loosely coupled GPS-aided inertial 

navigation systems," Intelligent Transportation 

Systems, IEEE Transactions on, vol. 12, pp. 1014-

1023, 2011. 

[15] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, 

Estimation with applications to tracking and 

navigation: theory algorithms and software: John 

Wiley & Sons, 2004. 

[16] J. Škaloud, "Optimizing georeferencing of airborne 

survey systems by INS/DGPS," Citeseer, 1999. 

[17] D. Bhatt, P. Aggarwal, V. Devabhaktuni, and P. 

Bhattacharya, "A new source difference artificial 

neural network for enhanced positioning accuracy," 

Measurement Science and Technology, vol. 23, p. 

105101, 2012. 

[18] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, 

and M. E. Lopez, "Real-time system for monitoring 

driver vigilance," Intelligent Transportation 

Systems, IEEE Transactions on, vol. 7, pp. 63-77, 

2006. 

[19] A. Noureldin, T. B. Karamat, M. D. Eberts, and A. 

El-Shafie, "Performance enhancement of MEMS-

based INS/GPS integration for low-cost navigation 

applications," Vehicular Technology, IEEE 

Transactions on, vol. 58, pp. 1077-1096, 2009. 

[20] D. Loebis, R. Sutton, J. Chudley, and W. Naeem, 

"Adaptive tuning of a Kalman filter via fuzzy logic 

for an intelligent AUV navigation system," Control 

engineering practice, vol. 12, pp. 1531-1539, 2004. 

[21] H. Ying, Y. Ding, S. Li, and S. Shao, "Comparison 

of necessary conditions for typical Takagi-Sugeno 

and Mamdani fuzzy systems as universal 

approximators," Systems, Man and Cybernetics, 

Part A: Systems and Humans, IEEE Transactions 

on, vol. 29, pp. 508-514, 1999. 

[22] A. Hamam and N. D. Georganas, "A comparison of 

Mamdani and Sugeno fuzzy inference systems for 

evaluating the quality of experience of Hapto-

Audio-Visual applications," in Haptic Audio visual 

Environments and Games, 2008. HAVE 2008. 

IEEE International Workshop on, 2008, pp. 87-92. 

[23] K. Belarbi, F. Titel, W. Bourebia, and K. 

Benmahammed, "Design of Mamdani fuzzy logic 

controllers with rule base minimisation using 

genetic algorithm," Engineering Applications of 

Artificial Intelligence, vol. 18, pp. 875-880, 10// 

2005. 

[24] T. J. Ross, Fuzzy logic with engineering 

applications: John Wiley & Sons, 2009. 

[25] D. Simon, "Training fuzzy systems with the 

extended Kalman filter," Fuzzy Sets and Systems, 

vol. 132, pp. 189-199, 2002. 

[26] D.-J. Jwo and T.-S. Cho, "A practical note on 

evaluating Kalman filter performance optimality 

and degradation," Applied Mathematics and 

Computation, vol. 193, pp. 482-505, 2007. 

[27] R. Vershynin, "How close is the sample covariance 

matrix to the actual covariance matrix?," Journal of 

Theoretical Probability, vol. 25, pp. 655-686, 

2012. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-75-2015

 
81




