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ABSTRACT: 

 

Polarimetric synthetic aperture radar (POLSAR) is an advantageous data for information extraction about objects and structures by 

using the wave scattering and polarization properties. Hyperspectral remote sensing exploits the fact that all materials reflect, absorb, 

and emit electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular composition. As a result of 

their fine spectral resolution, Hyperspectral image (HIS) sensors provide a significant amount of information about the physical and 

chemical composition of the materials occupying the pixel surface. In target detection applications, the main objective is to search 

the pixels of an HSI data cube for the presence of a specific material (target). In this research, a hierarchical constrained energy 

minimization (hCEM) method using 5 different adjusting parameters has been used for target detection from hyperspectral data. 

Furthermore, to detect the built-up areas from POLSAR data, building objects discriminated from surrounding natural media 

presented on the scene using Freeman polarimetric target decomposition (PTD) and the correlation coefficient between co-pol and 

cross-pol channels. Also, target detection method has been implemented based on the different polarization basis for using the more 

information. Finally a majority voting method has been used for fusing the target maps. The polarimetric image C-band SAR data 

acquired by Radarsat-2, over San Francisco Bay area was used for the evaluation of the proposed method.  

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

In this paper, we consider how combination of polarimetric 

synthetic aperture radar (PolSAR) data and hyperspectral 

images can be used to enhance the detection of targets (built-up 

area). Hyperspectral imaging (HSI) sensors collect data that can 

be represented by a three-dimensional data cube. For each pixel 

within a hyperspectral image, a continuous spectrum is sampled 

and can be used to identify materials by their reflectance. One 

shortcoming of HSI is that it provides no surface penetration. 

To overcome these limitations and enhance HSI system 

performance, we fuse HSI data with PolSAR sensor data. In 

counter camouflage, concealment, and deception applications, 

HSI data can be used to identify ground cover and surface 

material, and a PolSAR data can determine if any threat objects 

are under concealment. Because PolSAR and HSI sensors 

exploit the different phenomenology, their detection capabilities 

complement each other. 

PolSAR penetrates foliage and detects targets under tree 

canopy, but has significant clutter returns from trees. HSI, on 

the other hand, is capable of subpixel detection and material 

identification. Both SAR and HSI systems may suffer 

substantial false-alarm and missed detection rates because of 

their respective background clutter, but we expect that 

combining SAR and HSI data will greatly enhance detection 

and identification performance. 

 

2. POLARIMETRIC DETECTION 

2.1 Polarimetric SAR Target Detection 

The strategic advantage of SAR in target detection is the 

possibility to monitor under foliage. In PolSAR images, the 

main feature of target is a relatively large backscattering signal, 

which is usually brighter in comparison with the clutter. 

Generally, some statistical tests on the intensity of the clutter or 

the polarimetric target decompositions (PTD) based on the 

physics concepts (Yamaguchi, et al. 2005) have been applied to 

separate the targets from the background.   

Several detectors were proposed in the recent years. Some of 

them exploit the different polarimetric channels as independent 

measurements of the same scene (Rey 2002). Another class of 

polarimetric detectors adds some physical rationale exploiting 

knowledge regarding the scattering. The idea behind these 

methodologies is that the differences between clutter and targets 

can be magnified if some specific aspects of the polarimetric 

return are observed. In this second category, there are 

algorithms with a detection role based on some rationale linked 

to the physical behavior of the clutter (Nunziata, Migliaccio et 

al. 2012).  

The built-up areas could be estimated by many methods (T. 

Moriyama et al. 2005, L. Zhang et al 2008, S. Guillaso et al. 

2003, Guillaso et al. 2005). In this paper, PTD and polarimetric 

correlation coefficient are used to quickly estimate built-up area 

as shown in Fig. 1. The structure of building is like a dihedral 

corner reflector, so these areas have strong double-bounce 

scattering component. The double-bounce scattering component 

can be estimated by using the PTD. 
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The measured coherency matrix can be represented as the sum 

of several scattering components using PTD (Moriyama et al. 

2005). For example, the coherency matrix is decomposed into 

the three scattering mechanisms corresponding to odd-bounce, 

even-bounce, and volume scattering for PolSAR data in built-up 

area. 

 

 
 

Fig. 1. The flow chart of detection of built-up area. 

 

The volume scattering represents the remaining component 

besides odd-bounce and even-bounce scattering in built-up area. 

  

 (1) 
 

where ,  and  represent the weight of odd-bounce 

scattering, even-bounce scattering, and volume scattering, 

respectively. [ ], [ ] and [ ] represent the corresponding 

coherency base respectively. 
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where is a ratio of HH backscatter to VV backscatter in odd-

bounce scattering and  is a coefficient similar to  in even-

bounce scattering. and  are the ratios of HH and HV 

backscatters to VV backscatter in volume scattering 

respectively. 

But a ground-trunk interaction for forests is also like a dihedral 

corner reflector in C and L bands. To detect the refined built-up 

areas, the different scattering characteristics between natural 

distributed areas and built-up areas is used. The main point of 

difference is polarimetric correlation coefficient, because the 

reflection symmetry condition,  does 

not hold for built-up areas. The correlation coefficient between 

co- and cross-polarized channels is defined by [6] 

 

 
(3) 

 

If the correlation coefficient Cor( ) is close to one in a 

test area, this area can be seen as a built-up area. As shown in 

Fig. 1, we used different polarization states (different 

ellipticities and orientation angles) to calculate several 

correlation coefficients.  

Polarization refers to the alignment and regularity of the electric 

field component of the Electromagnetic wave. The path of the 

end point of the Electric wave vector traces out an ellipse in its 

general form as shown in Fig.2. The size of the ellipse is 

proportional to the amplitude of the wave. The shape can be 

characterized by two geometrical polarization parameters, the 

ellipticity τ varying from -45 to +45 and the orientation angle φ 

varying from 0 to 180. The electric field of a monochromatic 

plane wave propagating in the z-direction can be represented by 

a two component vector in any polarization basis. This can be 

expressed in terms of a complex polarization vector. 

 

 
 

Fig. 2. Polarimetric ellipse  

 

 
(4) 

 

Rough built-up area can be estimated firstly by setting a 

threshold value of double-bounce scattering component, then 

refined built-up area can be obtained by setting a threshold 

value  of correlation coefficient to rough built-up area. In this 

paper, the values of  and  are the mean value of double-

bounce scattering component and correlation coefficient. 

 

3. HYPERSPECTRAL DETECTION 

3.1 Detection methods overview 

Recently, target detection has attracted considerable interest in 

many hyperspectral remote sensing applications, such as 

agriculture, forestry, geology, and defence. In fact, the aim of 

target detection is to identify targets, rare pixels with known 

spectral signatures. Over the last two decades, several detection 

algorithm have been developed using statistical, physical, or 

heuristic approaches (Manolakis and Shaw 2002, Manolakis, 

Marden et al. 2003, Nasrabadi 2014). Most algorithms are 

based on second-order statistics to construct detector, such as 

the matched filter (MF) (Manolakis, Marden et al. 2003), the 

constrained energy minimization (CEM) (Farrand and Harsanyi 

1997) and the adaptive coherence estimator (ACE) (Kraut, 

Scharf et al. 2001, Manolakis, Marden et al. 2003). 

In 2015, Zou and Shi instead of refining the target spectrum 

directly similar to (T. Wang et al. 2014, X. Fan et al. 2011), 
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built a new hierarchical CEM (hCEM) to suppress the 

variational background spectra while preserving the targets. In 

here, we use the hCEM method with the purpose of improving 

the performance of traditional CEM detector. Since the classical 

CEM detector, in some special cases, cannot completely push 

out the targets and suppress the backgrounds in one round of 

filtering process, we filter the data for several times to solve this 

problem. In hCEM method, the CEM detectors of different 

layers are linked in series. After each layer’s detection, some 

background spectra are suppressed by a nonlinear function 

based on the output of the detector. Then, the transformed 

spectra are forward sent to the next layer’s detector, until the 

CEM detector’s output converges to a constant. Suppressing the 

undesired backgrounds makes the CEM detector better 

concentrate on the hard-detected targets. In this way, the 

performance of the detector will be gradually enhanced layer by 

layer. 

 

3.2 Brief Introduction to CEM 

Consider a hyperspectral image with N spectral vectors and L 

bands: . All spectra of the hyperspectral 

image can be arranged in an L×N matrix as . 

The aim of CEM algorithm is to design an optimal finite 

impulse response (FIR) filter, specified by the vector 

. The average output energy from all the 

pixel vectors can be represented as 

 

 
(5) 

 

where  represents the correlation matrix, and 

 represents the output of the 

detector. The CEM designs an FIR filter, which minimizes the 

total output energy, subject to a constraint that the filter’s 

response to d is a constant (e.g., ) as follows: 

 

 

 
(6) 

 

where d is a prechosen target spectrum and can be obtained by 

averaging different target spectral vectors of a certain material 

in one hyperspectral image. The solution of the aforementioned 

optimization problem is given in (W. H. Farrand et al, 1997), 

which is 

 

 
 

 

(7) 

 

Usually, the target pixels will get large value of outputs, while 

the background pixels will get small ones. Finally, each element 

of y is compared with a fix threshold. If the output value is 

higher than the threshold, we decide the target present in the 

corresponding pixel; otherwise, we decide there is a target 

absent. 

 

3.3 hCEM 

In hCEM method, we perform a transformation on the spectra 

for beneficial target detection. The traditional CEM detector is a 

single-layer detector, while the proposed hCEM detector 

consists of different layers of traditional CEM detectors, and the 

detectors of different layers are linked in series. After each layer 

of detection, the background spectra are suppressed (reduce its 

magnitude while keeping its direction in the spectral space) 

based on the current layer’s output score. The CEM detector is 

constructed based on the correlation matrix R, while the hCEM 

detector is constructed based on the corresponded revised 

correlation matrix. Since the revised correlation matrix contains 

more information of the hard-detected spectra, the hCEM could 

have better concentration on those hard-detected pixels (Zou 

and Shi, 2015). 

Now, consider the kth layer. The CEM output of this layer can 

be represented as 

 

 
(8) 

 

where and represent the spectral matrix and the 

correlation matrix of the kth layer, respectively. Then, each 

spectral vector is transformed by multiplying a nonnegative 

number  based on its output score as follows: 

 

 (9) 

 

where a nonlinear function  is used to impose 

on the spectral vector . We consider this function as a “soft-

threshold” operation: hold the spectrum  whose output score 

is large, while suppress the spectrum  whose output score is 

small. In this way, the undesired background spectra are 

gradually suppressed after each layer’s detection, while the 

target spectra will remain unchanged. In this paper, the 

nonlinear suppression function is defined as follows:  

 

 
(10) 

 

 
 

Fig. 3. Shape of the nonlinear suppression function 

 with different choices of . 

 

where  is a positive parameter to adjust the shape of the 

function (10). Fig. 3 shows shape of function (10) under 

different choices of . Finally, the target spectra and the 

transformed background spectra will be used to construct the 

new CEM detector in the (k + 1)th layer. The aforementioned 

steps will be repeated until the output  converges to a 

constant. In this paper, we calculate the error of the average 

output energy of the current layer and the previous layer, as 

follows: 

 
(11) 
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If  (  refers to a small positive number), the iteration will 

be stopped. 

 

4. EXPERIMENTAL RESULTS AND DECISION 

FUSION 

4.1 Study area 

The Radarsat-2 C-band full polarized image and Hyperion 

hyperspectral image of San Francisco, in northern California, 

USA, are used for the buildings detection. The nominal slant 

range resolution of POLSAR data is 11.1 m at near range to 

10.5 m at far range. The spatial resolution of hyperspectral 

image is 30m×30m. 

                             

        
(a)                                                 (b) 

Fig. 4. Google earth (a), and Hyperspectral true color (b) images 

of study area 

 

The study area includes mostly urban areas and forest areas. 

Google earth and hyperspectral true color images from the study 

area are shown in Fig.4.  

 

4.2 Built-Up Areas Detection 

The first to detect the built-up areas from POLSAR data, 

according to the Fig.1., we used the double bounce component 

of Freeman decomposition. The result is shown in Fig. 5. After 

further using the correlation coefficient in different polarization 

states by 5 degrees steps of ellipticity (𝜏) and orientation (𝜑) 

angles, the refined built-up areas can be obtained as some of 

them shown in Fig. 6. Built-up areas detected in hyperspectral 

image by hCEM method using 5 adjusting parameter ( ) and 

two of them are given in Fig.7.  

 

 
Fig. 5. Built-up areas estimated by using double bounce 

scattering component 

 

     
(a)                                             (b) 

       
(c)                                         (d) 

Fig. 6. Built-up areas estimated by using double bounce 

scattering component and the Correlation coefficient of (a) HH, 

HV (b) 𝜏=0,𝜑=100 (c) 𝜏=0,𝜑=135 and (d) 𝜏=-15,𝜑=55 angles 

 

    
(a)                                                (b) 

Fig. 7. Built-up areas detected by hCEM in two adjusting 

parameters, (a) 100 and (b) 10. 

 

 

4.3 Decision Fusion 

Different information sources can have different degrees of 

reliability, i.e., one data set might be more reliable than others 

in a specific analysis since the characteristics of sensors or data 

sets are not necessarily all the same. If each data set is taken as a 

separate information source, classification can be considered as 

an example of multisource data classification which has 

conceptually two different approaches. 

 

 
 

Fig. 8. Fusion procedures 

 

One category is the data fusion approach shown in Fig.8(a) in 

which the feature vectors of the data sources (or sensor) are 

given to a central decision procedure which makes the final 

decision. The second category shown in Fig.8(b) is the decision 

fusion approach in which a final class decision is made by 

summarizing only the class decisions of each data set. 

In this paper we used the second method by Majority voting 

procedure. As shown in Fig.9, the final target maps generated 

by majority voting on hyperspectral and POLSAR target 

detection maps, separately. If the pixel of two this maps is 

labeled as the target, then this pixel is determined as the target 

at the final built-up map as shown in Fig. 10. 
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                       (a)                                               (b) 

Fig. 9. Majority Voted Images of (a) Hyperspectral and (b) 

POLSAR 

 

 

Fig. 10. Final Target map 

Finally we calculated Correctness parameter (Tp/Tp+Fp) for 

each output as shown in Table 1. 

 

Outputs Correctness 

Double bounce 

scattering component 0.57 

Double bounce 

scattering component 

and the Correlation 

coefficient of HH, HV 

0.75 

Hyperspectral 

component 
1.00 

Fused Component 1.00 

Table 1. Correctness parameters 

 

5. CONCLUSION 

When the resolution is low, for example, in the case of space 

borne SAR or vegetation such as tree or grass and building in 

the same resolution cell should be considered in realistic 

scattering scenario. In the first attempt we reserved the odd and 

even-bounce scattering components related to building and the 

remaining scattering components is removed. The built-up areas 

are estimated by using Freeman PTD and the correlation 

coefficients in several polarization states. On the other hand, 

and in second step we have used a hyperspectral target detection 

algorithm, the hCEM algorithm, which suppresses undesired 

background spectra and holds the target spectra through a layer-

by-layer filtering procedure and in each layer, we have 

constructed a better detector than previous layers. Experimental 

results on two real POLSAR and Hyperspectral images suggest 

that our procedures in POLSAR and Hyperspectral have reliable 

results.  
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