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ABSTRACT: 

 

Earthquake can pose earth-shattering health hazards to the natural slops and land infrastructures. One of the chief consequences of 

the earthquakes can be land sliding, which is instigated by durable shaking. In this research, an efficient procedure is proposed to 

assist the prediction of earthquake-originated slope displacements (EIDS). New hybrid SVM-CBBO strategy is implemented to 

predict the EIDS. For this purpose, first, chaos paradigm is combined with initialization of BBO to enhance the diversification and 

intensification capacity of the conventional BBO optimizer. Then, chaotic BBO is developed as the searching scheme to investigate 

the best values of SVR parameters. In this paper, it will be confirmed that how the new computing approach is effective in prediction 

of EIDS. The outcomes affirm that the SVR-BBO strategy with chaos can be employed effectively as a predicting tool for evaluating 

the EIDS. 
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1. INTRODUCTION 

Earthquake can pose earth-shattering health hazards to the 

natural slops and land infrastructures. Dislocation of earthquake 

can cause intense and large destruction in earth and its 

structures. Earthquakes with high magnitudes can cause far-

reaching land sliding on sensitive slopes (Keefer, 1984, Jibson, 

1993). One of the leading consequences of the earthquakes can 

be land sliding, which is instigated by durable shaking. Ground 

motion, material strength and slope configuration has an effect 

on creating landslides from particular slopes (Ambraseys, 

1995). Prediction of triggered displacements is a decisive 

requirement in hazard management. Effective planning after 

hazard can be completed based on such a predictive analysis. 

In this theme, there is requirement for developing more 

competent approaches for attaining more accurate predictive 

results for this problem (Sakellariou et al., 2005). The support 

vector regression (SVR) is usually known as an operative data 

mining structure (Lu et al., 2009). In each operation, certain 

parameters ought to be selected by user specifically. The overall 

competences of the SVR are related to its preliminary 

parameters (Lu et al., 2009). Inaccurate outcomes can be 

obtained by inappropriate set of primary parameters. Hence, the 

prerequisite parameters of SVR can be determined fittingly by 

using proper heuristic mechanisms. 

Up to 2015, many nature inspired procedures have been 

established to tackle optimization operations. Biogeography-

based optimization (BBO) is a robust well-established 

evolutionary strategy announced in 2008 (Simon, 2008). It 

mimics the relocation of wildlife amongst diverse islands and 

habitats on earth (Simon, 2008). Since 2008, BBO has been 

implemented to treat various complex tasks such as sensor 

selection, groundwater detection and classification (Panchal et 

al., 2009). Up to now, BBO has also revealed efficient 

performance on solving spatial tasks on geosciences as well. In 

BBO, any solution should be seen as a “habitat” with some 

suitability index (HSI) (Simon, 2011). Solutions with superior 

indexes will share their features with others. However, this 

algorithm still has a main problem: immature convergence to 

regional elites. To relive this problem, some modifications are 

required. Hence, BBO can be hybridized with chaos. Chaos can 

be defined as unpredictable motions observed in dynamical 

systems (Heidari et al., 2015). In this extent, several works 

showed that chaos paradigm can improve the efficiency of the 

algorithms. 

In this paper, an effective methodology is proposed to assist the 

prediction of earthquake-originated slope displacements 

(EIDS). Hybrid SVM-BBO strategy is implemented to predict 

the EIDS. For this purpose, first, chaos paradigm is combined 

with initialization of BBO to boost the exploration and 

exploitation capacity of the basic optimizer. Then, chaotic BBO 

(CBBO) is used as the searching scheme in order to investigate 

the best values of SVR parameters. In the rest of paper, it will 

be demonstrated that how the new computing approach is 

effective in prediction of EIDS. 

The organization of this article is as: support vector regression 

(SVR) is introduced in Section 2; BBO and chaotic BBO will 

be presented in Section 3; the tuning of SVR by CBBO is 

expressed in Section 4. Prediction of EIDS is done in Section 5. 

The results are reported in Section 6; conclusions are specified 

in latest Section. 

2. SUPPORT VECTOR REGRESSION (SVR) 

Support vector machines (SVMs) announced in 1995 as a 

machine technique that have capabilities in prediction and 

simultaneous error minimization (Vapnik, 1995). It has two 

main categories including support vector regression and support 

vector classification (SVC) (Basak, 2007). Fitting a linear 
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function to the feature space with least suitable complexity and 

mapping primary data into higher-dimensional space are the 

principle concepts of SVR (Basak, 2007). For reducing 

complexity, the training samples may be defined as 

1 1{( , ) | ( , ),...,( , )}n nXY x y x y x y (n symbolizes the number of 

training samples). Finding linear relation among input x ∈ Rn 

and output vector y ∈ R with n-dimension is one of the SVM 

objectives: 

( ) ,Tf x w x b                                                                   (1) 

Where, b and w show the regression offset and the slope, 

correspondingly. To obtain the b, w values, the subsequent term 

should be minimized (Vapnik, 1995): 
2
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Loss function in SVR (Vapnik, 1995) performs ε-insensitive: 
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The reformulation of this problem can be arranged as: 
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where αi, αi
* are positive Lagrange multipliers, C is positive 

parameter that specifies trade-off between weight vector and 

approximation error (Vapnik, 1995). The best linear hyper 

surface regression that outcomes from the above terms can be 

specified by (Vapnik, 1995): 
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where K(xi, x) shows the kernel function applied for mapping 

input data onto the feature space in nonlinear regression. It can 

be expressed as follow: 

( , ) ( ) ( ),   , 1,..., ,T

i i jK x x x x i j l                               (9) 

where the right side of the equation are the projection of the xi 

and xj to the space of feature, correspondingly. In this work, 

RBF equations are utilized as: 
2( , ) exp( / 2 ),    >0,i j i jK x x x x                              (10) 

 

3. BIOGEOGRAPHY-BASED OPTIMIZATION 

ALGORITHM (BBO) 

Biogeography based optimization (BBO) algorithm can be 

regarded as a relatively well-established, robust meta-heuristic 

approach that has been implemented to tackle several complex 

tasks (Pan et al., 2011). BBO is originated from the theory of 

island biogeography introduced by Simon (2008). The BBO 

optimizer exposes specific advantages over the old-fashioned 

calculus-based problem solvers. The latter typically require 

some mathematical features like differentiability and/or 

convexity. But, BBO is founded on stochastic explorative 

mechanisms (Simon, 2011). It breeds an updated candidate by 

observing all reachable solutions. BBO contains two main 

thoughts: mutation and migration (Simon, 2011). First stage is 

designed for evaluating each individual of populations and 

second stage is developed for computing migration to realize 

overall minimum. In BBO technique, the following items 

should be considered: 

 

Two main component of each habitat are emigration rate λ and 

immigration rate µ (Simon, 2011). A better solution should 

have a comparatively high µ and low λ, while the opposite is 

correct for an unsuitable result. They are dependent upon the 

number of species in each habitat, which can be obtained as 

follow: 

 max1 / ,  0 ,maxs SI S SS                                          (11) 

max( / ),  ,  0 ,s maxE S S S S                                        (12) 

where Smax indicates the largest possible number of species,    

S shows the number of species, 

 E specifies the maximum emigration rate, 

I symbolizes the maximum rate of immigration.  

 

One user-defined parameter is utilized to update each solution. 

For improving the exploitation capability of BBO, each bad 

solution should collect additional beneficial information from 

the better solutions (Simon, 2011). 

 max max( ) (1 ) / ,sm S m P P                                               (13) 

where     mmax shows a user-defined mutation parameter,  

              m(S) symbolizes the mutation rate for a habitat, 

              Pmax denotes the maximum probability. 

 

Considering the mentioned operators, the BBO technique can 

be performed through the succeeding phases (Simon, 2011): 

 

Step 1: Preparing the prerequisite BBO parameters. 

Step 2: Initialize the stochastic group of habitats 

Step 3: For every habitat, the emigration and immigration rate 

and the HSI to the number of species should be calculated. 

Step 4: Afterward, emigration and immigration are employed to 

regulate each non-elite habitat, randomly. 

Step 5: Before recalculating each HSI, first, the probability of 

each habitat species should be updated and non-elite habitat 

should be mutated according to its probability. 
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where     Ps shows a habitat that holds S species 

              Ps+1 symbolizes a habitat with S+1 species 

              Ps-1 stands for a habitat with S-1 classes. 

               λs and µs express the immigration and emigration  

               rates of a habitat with S species, correspondingly. 

Step 6: Back to Step 3 for the succeeding repetition. This loop 

should be ended with regard to a prearranged condition. 

 

3.1 Chaotic BBO (CBBO) 

 

In general, chaos can be pronounced as some complex 

unpredictable waves in natural systems (Heidari et al., 2015). In 

this extent, several works showed that chaos paradigm can 

improve the efficiency of the meta-heuristics. Chaotic pattern 

also can enhance the diversification and intensification 

mechanism of these methods (Heidari et al., 2015). For this 

work, chaos paradigm is combined with initialization of BBO to 

boost the diversification and intensification capacity of the basic 

BBO optimizer. Analogous to other metaheuristics, there are 

two principal phases which are noticeable in BBO optimizer: 

initialization and breeding new generations. Population 

initialization can be regarded as an effective stage in BBO since 

it can affect the fineness values of the outcomes. In basic BBO, 
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initialization is performed in a random manner. As the chaotic 

signals characterize chaos-based behaviour, a generation of 

chaos embedded BBO can heighten both exploration and 

exploration. Hence, chaos theory can also enhance the 

efficiency of the robust BBO by refining the diversity of the 

solutions during more generations (Heidari et al., 2015).  

 

In this article, the logistic signal is utilized in the initialization 

step of CBBO. First, a chaotic signal should be selected. In 

these simulations, the logistic map is implemented in the first 

steps of the BBO. The logistic map can be expressed as follows 

(Heidari et al., 2015): 

 1 1 ,k k kx ax x                                                              (15) 

where xk denotes the kth number and k displays iteration 

number. Apparently, x (0,1)
 
with opening condition x0 (0,1). 

In later employments, a = 4 is utilized (Heidari et al., 2015). In 

chaotic initialization, the next equation is applied instead of 

random initialization. 

, min, max, min,( ) ( ),i d d d dx x x x chaos i d                          (16) 

( 1,  2,  ..., ,  1,2,3,..., ),si N d n   

where Ns shows the number of agents, xmax,d and xmin,d symbolize 

upper and lower restrictions of dth variable, xi,d is preliminary 

value of dth dimension of ith member, n shows the number of 

decision variables and chaos(.) indicates an utilized chaos-based 

signal as a recursive function. 

 

In addition, a chaotic immigration mechanism is proposed. In 

this process, the new equation is designed as follows: 

          , 1 , , 1 ,d t d d t d d t
i i jH SIV i H SIV i H SIV        (17) 

In this equation, d displays the dimension; the first term shows 

the ith solution in tth repetition, the next term symbolizes the jth 

answer in tth iteration. In this equation, θd(i) is determined 

chaotically in each repetition as: 

   
2

1 1sin( ),   2, , ;   2.3;  0,1 ,d d d d

i i ia i k a            (18) 

In dynamic operation, the characteristics of every new solution 

should be dynamically determined based on a combination of its 

pervious properties and another solution. In the BBO, each 

solution is only calculated based on the other members. This 

operation not only can enhance the exploration potential of the 

BBO, but also can relive the early convergence problem of the 

conventional optimizer. 

 

4. SVR TUNING BY CHAOS EMBEDDED BBO 

The learning parameters of the SVR have a great influence on 

its generalization capability. Determining the best set of these 

parameters is usually a hard task with regard to the space model. 

Tuning of these values by exhaustive search approaches cannot 

be usually an efficient task with respect to the passed time. In 

addition, some of them cannot convergence to the optimal 

point. Until now, some of works employed GA, ACO and HS to 

determine the SVR parameters (Saygili et al., 2008). In this 

article, the new CBBO is developed for tuning of SVR to 

enhance the efficiency of required SVR learning process. The 

structure of the SVR-CBBO is represented in Figure 1: 

 
Figure 1. The SVR-CBBO flowchart 

 

5. PREDICTION OF EIDS 

The main purpose of this investigation is to examine the 

aforementioned CBBO methodology in the test case of the 

EIDS prediction task. Dataset utilized in this article are 

obtained from the specialized literature in (Ferentinou et al., 

2007). The data tabulated in (Ferentinou et al., 2007) contains 

45 cases. 36 test cases of this data are employed for training and 

9 cases are utilized for testing. A software package was 

implemented in MATLAB to evaluate induced deformations for 

r = 5, 10, 15 (km) and M=6, 6.5 and 7 (Richter). The data in 

(Ferentinou et al., 2007) includes information for 45 slopes, 

were u can be obtained by using the subsequent equations. The 

formulation of the present test case is about these parameters: 

height (H), weight (γ), cohesion (c), angle of internal friction 

(φ), duration of quaking (D5–95), maximum plane acceleration 

(kmax) to displacement (u). 

10 max
max 5 95 max

Log 1.87 3.477 ,  / ,
yku

k MHEA g
k D k

 
   

 
    (19) 

where D5–95 shows significant length of quaking, ky represents 

the slope acceleration, MHEA shows the maximum horizontal 

acceleration (Ferentinou et al., 2007).  
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where M shows earthquake magnitude and r signifies distance 

in km (Ferentinou et al., 2007). In this paper, some pre-

processing stages are performed to moderate any outliers. This 

stage guarantees that the utilized raw records are faultlessly 
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appropriate for modelling. The employed dataset are normalized 

to the interval of (-1, +1) based on: 

min

max min

2 1M

x x
x

x x

 
  

 
                                                 (22) 

where x shows the initial dataset value, xM represents the 

mapped value, and xmax (xmin) symbolizes the maximum 

(minimum) values of input, correspondingly. To substantiate the 

proposed approach, 4 statistical criteria were preferred to 

measure the accurateness including MAPE, MSE, VAF, RMSE 

and R2. These values may be expressed as: 

2
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where n shows the observation number, tk is the real value, ˆ
kt  

symbolizes the estimated value of the kth measurement and 

t (or
t̂

 ) expresses the mean value of 
k (or

k̂
 ). 

 

6. EXPERIMENTAL RESULTS 

Here, the performance of CBBO is examined in detail. For this 

paper, proposed approach is realized by using MATLAB 

R2012a (7.14) on a T6400@4 GHz Intel Core (TM) 2 Duo 

processor PC with 4 GB RAM. For this test, CBBO procedure 

is experienced for 30 trials with 1.00E+02 iterations. In CBBO, 

the population size is 30; habitat adjustment probability is 1; 

immigration chance is 0.7; step size is 1; maximum of I and E 

is1 and mutation possibility is 0.007. 

 

In present article, an effective hybrid SVR-CBBO is 

recommended based upon MATLAB to predict the EIDS. 20-

fold cross-validation simulations are utilized for training task 

with SVR-CBBO in order to to realize more consistent 

outcomes. The attuned parameters with highest precision are 

recorded as the best suitable values. Then, the optimal factors 

are employed to train the SVR structure. The best values 

explored by the CBBO are reflected in Table 1. 

 

SVR-CBBO 

Optimal 

value of 

σ 

Optimal 

value of C 

Optimal 

value of ε 

Outcomes 1.8101 1842.108 0.0289 

Table 1. The best SVR parameters estimated by the 

proposed CBBO approach 

 

The calculated MAPE, RMSE, VAF, MSE, R2 and values for 

training datasets demonstrate the learning competence of data 

samples, while the outcomes of examined dataset expose the 

generalization capability and the robustness of the scheme 

modelling approaches. It is recognized that the model learning 

potential is influenced by the embedded complexity in the 

system designation. The SVR-CBBO results are demonstrated 

in Figure 2 and Figure 3 in comparison with the measured 

values of 45 data samples after training and testing stages. 

 
Figure 2. Comparison of predicted and measured deformation 

for training first 18 data samples 

 

From Figure 2, it can be observed that the SVR-CBBO can 

attain outcomes with an appropriate precision compared to the 

first 18 actual data (1-18). 

 

 
Figure 3. Judgment amongst predicted and measured 

deformation for training second 18 data locations 

 

From Figure 3, it can be observed that the SVR-CBBO can 

attain outcomes with a proper accuracy compared to the second 

18 actual data (18-36). The results for testing dataset are also 

shown in Figure 4. 

 
Figure 4. Judgment among predicted and measured deformation 

for testing data locations 

 

Performance investigation of SVR-CBBO for forecasting 

displacement is exposed in Table 2. 

 

Data R2 MSE RMSE VAF MAPE 

training 0.9911 0.00071 0.0247 99.68 4.1185 

test 0.9321 0.01423 0.1198 84.37 81.710 

Table 2. SVR-CBBO Performance for prediction of 

deformation 

 

The statistical outcomes stated in Table 2 affirm the high 

performance of the suggested mechanism. Based on the results, 
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SVR-CBBO is competence to be utilized efficaciously to tackle 

EIDS prediction task. For more investigations, the percentage of 

relative error is exposed in Figure 5. 

 

 
Figure 5. Relative error (%) of SVR-CBBO technique in 

displacement prediction 

 

 

It can be recognized that the exposed error for most of the 

samples are located in the (-10%, +10%) interval, which can be 

considered as a satisfactory precision. These outcomes also 

affirm that the premature convergence concern can be mitigated 

significantly by the suggested mechanism. 

 

7. CONCLUSIONS 

Earthquake can create earth-shattering hazards to the natural 

slops and terrestrial structures. In this paper, an effective 

methodology is proposed to assist the EIDS prediction task. 

Hybrid SVR-CBBO strategy is realized to forecast the EIDS. 

For this intention, first, chaos patterns were combined with 

operations of BBO to boost the exploration and exploitation 

capability of the BBO. Then, chaotic BBO (CBBO) was utilized 

as the searching tool to explore the best values of SVR 

parameters. Based on the results, it was confirmed that how the 

new CBBO method is effective in prediction of EIDS. The 

results confirm that the new CBBO technique is competent and 

effective to improve the SVR solutions. The outcomes affirm 

that the SVR-CBBO strategy can be employed effectively as a 

predicting tool for assessment of the EIDS. To the best of our 

knowledge, this research is the first implementation of chaotic 

BBO for prediction of EIDS in the professional literature. For 

future works, CBBO can be implemented and validated to 

tackle other spatial optimization tasks. 
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