EVALUATION OF SPATIAL AND TEMPORAL DISTRIBUTION CHANGES OF LST USING LANDSAT IMAGES (CASE STUDY:TEHRAN)
Keywords: Remote sensing, Landsat Images, land surface temperature, urban heat islands, Tehran
Abstract. In traditional approach, the land surface temperature (LST) is estimated by the permanent or portable ground-based weather stations. Due to the lack of adequate distribution of weather stations, a uniform LST could not be achieved. Todays, With the development of remote sensing from space, satellite data offer the only possibility for measuring LST over the entire globe with sufficiently high temporal resolution and with complete spatially averaged rather than point values. the remote sensing imageries with relatively high spatial and temporal resolution are used as suitable tools to uniformly LST estimation. Time series, generated by remote sensed LST, provide a rich spatial-temporal infrastructure for heat island’s analysis. in this paper, a time series was generated by Landsat8 and Landsat7 satellite images to analysis the changes in the spatial and temporal distribution of the Tehran’s LST. In this process, The Normalized Difference Vegetation Index (NDVI) threshold method was applied to extract the LST; then the changes in spatial and temporal distribution of LST over the period 1999 to 2014 were evaluated by the statistical analysis. Finally, the achieved results show the very low temperature regions and the middle temperature regions were reduced by the rate of 0.54% and 5.67% respectively. On the other hand, the high temperature and the very high temperature regions were increased by 3.68% and 0.38% respectively. These results indicate an incremental procedure on the distribution of the hot regions in Tehran in this period. To quantitatively compare urban heat islands (UHI), an index called Urban Heat Island Ratio Index(URI) was calculated. It can reveal the intensity of the UHI within the urban area. The calculation of the index was based on the ratio of UHI area to urban area. The greater the index, the more intense the UHI was. Eventually, Considering URI between 1999 and 2014, an increasing about 0.03 was shown. The reasons responsible for the changes in spatio-temporal characteristics of the LST were the sharp increase in impervious surfaces, increased use of fossil fuels and greening policies.