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ABSTRACT: 

 

Environmental pollution may be caused due to mines and mineral deposits. The accumulation of the associated heavy 

metals in soil and especially at the root zone of plants would result in plant contamination. This paper aims to detect the 

dominant heavy metals in Eucalyptus leaves using both biochemical and hyperspectral techniques for northern part of 

Bam in Iran. In this regards, using biochemical approach, some Eucalyptus leaf samples were collected, and their 

laboratory data containing the concentration of heavy metals were measured by Graphite Furnace Atomic Absorption 

Spectrometry (GF-AAS). Using ASD FieldSpec3 Pro spectrometer (Analytical Spectral Devices) also, the spectral 

profile of leaf samples was measured and compared with healthy ones namely control samples. Finally, using supervised 

classification methods, the spatial distribution of heavy metals was determined by combination of biochemical results, 

spectral measurements of samples and hyperspectral images of EO-1 satellite. Results showed that Eucalyptus trees 

accumulates the heavy metals of As and Pb with the average concentrations equalling 9.98 and 14.31 ppb while 

compared with the relevant control samples equalling 2.32 and 8.98 ppb, respectively. Combination of biochemical and 

hyperspectral data analysis also proved by increasing heavy metals concentrations in all samples, their spectral profiles 

for the visible and near infrared regions will be changed in comparison with those obtained from the control sample.  

 

 

1.  NTRODUCTION 

Accumulation of heavy metals in the soil often causes the 

environmental pollutions and their respective effects may be 

appeared in the plants (http://www.epa.gov). Therefore these 

plants can be good evident for identifying heavy metal 

contaminations in a region (Pugh et al., 2002). The resulted 

contaminations also might be incorporated into food chains and 

ecosystems cycle. So the investigation of such these 

contaminated plants is essential for sustainable developments of 

ecosystems and human health (Liu et al., 2010). 

Traditionally heavy metal concentrations in plants were 

approximated by field sampling and extensive laboratory tests 

(e.g. Pugh et al., 2002; Conesa et al., 2006). However for 

intensive plant sampling, this method may be costly and time-

consuming. The resulted information also could not describe the 

dynamics of heavy metal concentrations throughout the large 

areas (Liu et al., 2010).   

Nowadays the advanced remote sensing technologies, especially 

hyperspectral imaging system, have been widely employed to 

obtain the earth information in a timely and cost effective 

manner (Darmavan, 2006). Having developed the hyperspectral 

remote sensing techniques, they were also used to assess 

biochemical properties of plants (Mutanga and Skidmore, 

2004b; Mutanga et al., 2007). However, a review of the 

literature shows that remote sensing images or hyperspectral 

data have rarely been applied for retrieving heavy metal 

concentrations in plants. For example, Rosso et al. (2005) 

investigated the possibility of detecting a spectrally specific 

response in plant of Salicornia Virginica induced by a particular 

metal. Their findings demonstrated that the reflectance was 

sensitive to early stress levels only for cadmium and the 

lightweight petroleum. Surveying the heavy metal 

contamination and the biogeochemistry responses of vegetation 

Rhus chinensis, Li et al. (2008) found that leaf reflectance have 

significantly correlation with Cu concentration in leaves. 

Shakya et al. (2008) showed that the excessive heavy metals in 

plant affect its chlorophyll content. This issue could be 

continuously monitored by hyperspectral images or field-

measured hyperspectral data (Blackburn, 1998). During recent 

years, hyperspectral imaging system has been successfully used 
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to identify geological features (Kratt, Calvin and Coolbaugh, 

2004; Kruse et al., 2003). These Hyperspectral data have also 

been an alternative to conventional ground-based methods to 

detect plant stress and play a valuable role in providing time-

specific and time-critical information for precision farming (Liu 

et al., 2011). Furthermore, with the launch of hyperspectral 

sensors such as Hyperion on board Earth Observation One (EO-

1) platform, such this information could be extracted with a 

higher degree of accuracy. This is due to the Hyperion’s 

capability of producing 242 contiguous spectral resolution 

elements from 0.356 to 2.577 µm with 10 nm band interval. In 

addition, the 30-meter spatial resolution provides another 

advantage since the feature of interest could be mapped in more 

detail. The Hyperion sensors are spatially able to collects image 

for a narrow area for about 7.7 km in the across track direction 

(width) and 42 km in the long track direction (Stephen et al., 

2003, Darmavan, 2006).  
 

With respect to the mentioned studies, the problems caused by 

environmental pollutions and the necessity of using more 

efficient methods for data acquisition, the main objective of this 

paper is to detect the dominant heavy metals in Eucalyptus 

leaves using both biochemical and hyperspectral techniques. In 

this regards, using biochemical approach, the concentration of 

heavy metals were measured by Graphite Furnace Atomic 

Absorption Spectrometry (GF-AAS). Using ASD FieldSpec3 

Pro spectrometer also, the spectral signature of leaf samples was 

measured and compared with control samples i.e. unpolluted 

ones. Finally, by combination of laboratory analysis, 

spectrometry of samples, hyperspectral images and 

implementing supervised classification methods, the spatial 

distribution of heavy metals in the region was determined. To 

evaluate the proposed methodology, the northern area of Bam 

city in Kerman, was chosen as the case study. 

 

 

2. MATERIALS AND METHODS  

2.1 Case Study 

The city of Bam is located in south-eastern of Kerman province 

in Iran (Figure 1). According to the geological map of Bam 

City, published by Geological Survey of Iran (GSI), the main 

porphyry deposits of this region is located in the northern part 

of Bam which is hosted by quaternary alluvial deposits. 

Moreover, only the northern and north-eastern parts of this 

region has been covered by Eocene formations and consisted of 

some heavy metals like lead (Pb), Arsenic (As), barite, gold 

(Au) and copper (Cu). The Eucalyptus trees are known to be the 

main plant species in the region and may translocate some 

heavy metals like Au from mineral deposits (Lintern et al., 

2013). Figure 1, shows the location of the study area and the 

satellite image correspond to it.  

2.2 Spectroscopic data 

The fieldwork of current study has been carried out throughout 

the 8 Eucalyptus sampling sites in northern part of Bam City, as 

the polluted sites. At each sampling site, around 3 Eucalyptus 

leaves were collected from the upper parts of plants and labelled 

as the polluted samples. Moreover, some Eucalyptus leaves 

from Kerman City were taken as an unpolluted sample and 

labelled control sample. Having taken all leaf samples to the 

laboratory, the ASD (Analytical Spectral Devices) FieldSpec® 

Pro spectrometer was employed to measure the spectral profile 

of leaf samples. Afterwards, the initial pre-processing of 

spectral profiles was conducted using ViewSpecPro software to 

obtain the reflectance spectra which were saved into the spectral 

library. These extracted spectra were finally used to be 

compared with the biochemical results of the laboratory 

analysis. 

 

 

Figure 1. Location of study area and its satellite image  

 

2.3 Biochemical Data based on the Laboratory analysis 

Biochemical data containing the concentration of heavy metals 

were determined by Graphite Furnace Atomic Absorption 

Spectrometry (GF-AAS). For this aim, all Eucalyptus samples 

were placed into an oven at 70 °C for 72 hours to be completely 

dried. Samples then were digested with 90 °C aqua regia 

(HNO3:HCl ratio 1:3). Heavy metal concentrations were finally 

determined by graphite furnace atomic absorption spectrometry 

(GFAAS).  

 

2.4 Hyperspectral Data 

Six Hyperion images for period of 2002-2004 years were 

initially used in this research. Among of them therefore three 

images with minimal noise and clouds were selected. It's worth 

mentioning that Hyperion data acquired in this study comes as 

Level 1T (L1T) products. The radiometric and systematic 

geometric corrections incorporating ground control points have 

been applied while employing a 90-meter Digital Elevation 

Model (DEM) for topographic accuracy 

(https://lta.cr.usgs.gov/EO1.html). Although the Hyperion sensor 

was designed to record 242 bands, some bands are not 

appropriate for data analysis process. So, 198 out of 242 bands 

would be used as input for image processing and identification 

of target materials.  
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2.5 Hyperspectral data analysis  

Although there is no strict procedures to extract information 

from remotely sensed hyperspectral image data, the following 

stages which have been listed in figure 2, are known to be 

appropriate for preprocessing and processing of data (Kruse, 

2003). For making such these corrections in this paper we used 

the ENVI1 software in both preprocessing and processing 

stages.  

 

 

 

 

 

 

 

 

 

Figure. 2 Different stages for preprocessing and 

processing of Hyperion data 

 
2.5.1 Data Pre-processing  
 

The pre-processing procedures composed of radiometric and 

geometric corrections to remove the effects of sensor and 

environmental factor (Darmavan, 2006(. So the destriping of 

data images, atmospheric corrections by FLAASH technique 

and minimizing noise of Hyperion images are all radiometric 

corrections which carried out in this paper. 
 

a) Separating bad bands   

While using the Hyperion images, the zeroed bands and strong 

water vapor bands are supposed to be "bad bands" and will be 

ignored in further processing. To treat these bands in an image 

one method, which is employed in this study, is to exclude them 

permanently by creating an image subset containing only the 

good bands (http://www.exelisvis.com).  
 

b) Destripe 

In order to address sensor specific issue, the destriping of data 

images is currently applied. In pushbroom scanner such as 

Hyperion the difference in gain and offsets and temperature 

effect would likely caused striping in the images (Darmavan, 

2006). When destriping the data, ENVI calculates the mean of 

every nth line and normalizes each line to its respective mean 

Research Systems Inc. (2005).   
 

c) Atmospheric correction  

The presence of water vapor and carbon dioxide molecules, 

aerosols etc. in the atmosphere creates atmosphere dynamic 

processes in the form of radiation scattering and absorption. In 

order to acquire the actual surface reflectance and minimize the 

effects of atmosphere, the atmospheric correction is needed 

(Darmawan, 2006). To achieve this goal the FLAASH2 

technique was employed in this paper.  

 

                                                                 
1 Environment for Visualizing Images: ENVI 
2 Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes  

d) Mimizing Noise and Dimensionality of Data 

Since the extraction of more detail information in hyperspectral 

imaging system is carried out through the record of narrow 

bands, most hyperspectral data would have redundant 

information which likely increases the amount of time and 

computing resources needed to process the data. So the 

Minimum Noise Fraction (MNF) transformation, available in 

ENVI software, was employed to reduce the dimensionality of 

data and minimize their noise.  

 

2.5.2 Data Processing 

 

To process the Hyperion images in this section some techniques 

as following were employed:   
 

a)  Determination of pure pixels  
 

Pixel purity index (PPI) is commonly used to find the extreme 

pixels or spectrally pure pixel (ENVI help). According to 

description of Research Systems Inc (2005) PPI is computed by 

repeatedly projecting n-dimensional scatterplot into a random 

2D space, and recording each extreme pixel found in the 

iteration. The record of each pixel is then used to create a PPI 

image where the digital number (DN) of the pixels corresponds 

to the number of times where that pixel recorded as extreme 

pixel (Research Systems Inc, 2005). 
 

b)  Endmembers Extraction \ 

Endmembers are spectrally pure unique materials that occur in 

a scene. Having indicated the image’s purest pixels, ENVI 

provides several methods to identify the endmembers. The most 

powerful one that used in current study is n-Dimensional 

Visualizer method which interactively selects the endmembers 

in n space. However, this method is subject to the analyst 

experience and knowledge, so careful action need to be taken to 

minimize the bias from occurring. 

c) Supervised classification using Spectral Angel Mapper  

Spectral Angle Mapper (SAM) algorithm is based on the 

measurement of the spectral similarity between two spectra. The 

spectral similarity can be obtained by considering each 

spectrum as a vector in n-dimensional space, where n is the 

number of bands. The SAM algorithm determines the spectral 

similarity between two spectra by calculating the angle between 

the two spectra (Rashmi et al., 2014) 
 

 
Figure 3. Spectral angle between image and reference spectra in 

SAM algorithm (Rashmi et al., 2014) 

 

3. RESULTS AND DISCUSSIONS 

This section presents the results of different stages of current 

study including laboratory and spectroscopic analysis as well as 

Hyperspectral processes. It also discusses the Hyperspectral 

findings based on the supporting theory and compares them 

with those resulted from laboratory analysis. 
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3.1 Spectroscopic Results   

The spectral measurements of this study were taken using an 

ASD spectrometer. This spectrometer was operated in the 350–

2500 nm spectral regions with the sampling interval of 1 nm. 

The reflectance spectra of leaf samples were measured through 

calibration with a standardized white spectrum panel. Figure 4 

shows some spectral profiles of Eucalyptus leaves for both 

contaminated and control samples.  
 

  
a)  Control sample  b) Sample 1  

 

    
c) Sample 5   d) Sample 8   
 

Figure 4. The spectral profile of Eucalyptus leaves for control 

and polluted samples 1, 5, 8 

 

As shown in figure 4, there is nearly a bit difference in the Red 

Edge Position (REP) for all samples. Comparing with the 

control sample, some samples like 1 and 5 have different values 

of reflectance in the range of 940-1120 nm. In the other word, a 

weak reflectance peak is observed around this range, namely in 

near infrared region.  

 

3.2. Biochemical Results Based on Laboratory Analysis  
 

Using the GF-AAS device, the concentration of some heavy 

metals like As, Pb and Cu was determined in the laboratory. 

According to figure 5, the respective results of biochemical 

analysis demonstrates that the average concentrations of As and 

Pb for all samples is significantly higher than control ones. The 

relevant average of these heavy metals concentrations for all 8-

samples is equal to 9.98 and 14.31 ppb while compared with the 

control samples equalling 2.32 and 8.98 ppb, respectively. So 

one can say the Eucalyptus trees are good accumulators for As 

and Pb heavy metals. Laboratory analysis also confirmed that 

there is no significant variation for Cu concentrations in all 

Eucalyptus samples either polluted samples or control ones.   
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Figure 5. Concentrations of As and Pb heavy metals for all 

Eucalyptus samples 
 

3.3. Combination of Spectroscopic and Biochemical Results  
 

Figure 6 represents the ccombination of biochemical and 

spectroscopic analysis. This comparison proved by increasing 

the concentrations of heavy metals in all samples, their spectral 

profiles for the visible and near infrared regions will be changed 

while compared with the control sample.  
 

 
Figure 6. Comparison of spectral profiles for the 1st and 5th and 

control sample 
 

According to figure 6 and in comparison with control sample, 

there are some deviations in spectral profile of the 1st and 5th 

sample throughout the visible and near infrared regions. In this 

figure also there are two weak reflectance peaks in the range of 

940-1120 nm. So, it can be concluded due to high amount of 

heavy metals in the leaf samples, some variations will be 

occurred in their spectral profiles. The significant distinction is 

for the 1st and 4th samples whose As and Pb concentrations are 

relatively higher than the others.  

 
3.4. Results of Hyperion data analysis 
 

This section represents the outputs resulted from preprocessing 

and processing of Hyperion images. It also discusses the 

findings based on the supporting theory. Finally the way that 

Hyperion results were employed and compared with those 

obtained from laboratory and spectroscopic data have been 

discussed. 

 

3.4.1. Preprocessing Results of Hyperion images 
 

a) Separating bad bands    
 

Before using Hyperion images in this study, about 42 bands 

were identified to have strong water vapor and identified as the 

bad bands. So for the subsequent stages of Hyperion analysis  

They were permanently excluded. 
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b) Destripe 
 

As illustrated in figure 7a, a visual check on the Hyperion 

images showed that both vertical and horizontal stripes are 

occurred in some of the bands. To remove these stripes the 

image was firstly rotated by 80° clockwise. Therefore, a method 

suggested by Ede (2004) was employed in order to minimize the 

vertical striping in pushbroom scanner like Hyperion.  
 

 
Figure 7. Destriping analysis for Hyperion image:  a) before and 

b) after Striping Removal 
 

Figure 7 shows the Hyperion image of the Bam City before (a) 

and after (b) destriping analysis. As demonstrated in figure 7b 

no striping artifacts were observed after removing strips.    
 

c) Atmospheric Correction 
 

Using FLAASH technique in ENVI, we could minimize the 

effects of atmosphere, solar illumination, sensor viewing 
geometry and terrains. Figure 8 illustrates the spectral profile of 

the selected pixel before (a) and after (b) atmospheric 

correction.  
 

 
Figure 8. Feature signature before (a) and after (b) atmospheric 

correction 
 

By minimizing the atmospheric effects in figure 8, it is expected 

that the outcome will accurately represent the actual surface 

reflectance. According to this figure also the spectral profile of 

the selected feature has changed from radiance unit into 

reflectance one. It is worth mentioning that the first curve in 

figure 8b is generally related to the reference spectral profile of 

vegetation and the second one is for Eucalyptus trees which are 

available in the selected area on this figure.  

 

 

 

d) Minimizing noise and dimensionality of data 
 

Results of MNF transformation for reducing the dimensionality 

and noise of the data is presented in figure 9. Using this 

transformation, the data volume was significantly reduced by 

removing noise-affected band. 

 

 

Figure 9.  Correlations between eigenvalues and eigenvalue 

numbers using MNF transformation 
 

According to figure 9 the noise affected band can be identified 

using eigenvalues plot as well as the eigenimages i.e. MNF 

band images. This figure also shows that the most coherent data 

would contained within the first 20 MNF bands, while the rest 

of the MNF bands would contain noise affected data, made 

them unsuitable to further stages.  

 

3.4.2. Processing Results of Hyperion images 
 

a)  Pure Pixels and Endmembers Extraction  
 

After removing the noise and dimensionality of data, the first 20 

coherent MNF bands were used as input for ENVI’s Pixel 

Purity Index (PPI) routine. Figure 10 represents the results of 

PPI technique which shows both number and distribution of 

pure pixels in our study area. According to this figure, the 

number of pure pixels found during the PPI iteration process 

was 130,000 which obtained after 10,000 iterations.  

    
(a)     (b) 

 

Figure 10. (a) PPI curve (b) PPI image 
 

After indicating the purest pixels on image, detemination of the 

endmembers were conducted by n-Dimensional Visualizer in 

ENVI to interactively select the endmembers in nD space. 

However, this method is subject to the analyst experience and 

knowledge, so careful action need to be taken to minimize the 
bias from occurring. Finally , this routine extracted 2 

endmembers, which  referres to the two dominant vegetations in 

the case study namely, Eucaliptus and Palm trees.  

a 

b 

a 

b 
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b) Supervised classification using SAM algorithm  
 

Since there wasn't any standard spectral signature of 

contaminated Eucalyptus in our study area, we used the ground-

based spectra that were measured by spectrometer device. 

These spectra were finally inputted to the SAM algorithm for 

supervised classification.  

As previously mentioned, the biochemical analysis of this study 

proved that Eucaliptus trees have been contaminated by As and 

Pb. Using ground-based spectra of those samples which 

contained the high levels of As and Pb, the SAM classification 

was implemented. According to figure 11 the contaminated 

region by high values of As and Pb classified into one category 

and the other unpolluted areas whose spectral signature were 

similar to control sample were placed in the other class.   

 
Figure 11. Classification of polluted (red pointes) and 

unpolluted (green points) regions by SAM algorithm  

 

Figure 11 shows the classified image of the case study by SAM 

technique. According to this figure the contaminated 

Eucalyptus trees in the region were specified using red points. 

So the unpolluted ones namely healthy trees were remained in 

the green color.  
 

 

4. SUMMARY AND CONCLUSIONS 

 

Paying attention to the environmental contaminations is of great 

importance due to their impact on the food chains, human 

health and sustainable developments of ecosystems. In this 

regards, the identification of heavy metals that could be 

accumulated by Eucalyptus trees and have located in northern 

part of Bam City was the main objective of this study. 

Moreover, combination of biochemical and hyperspectral 

techniques to specify the spatial distribution of contaminated 

Eucalyptuses and classify the polluted and unpolluted areas of 

case study is another task that was fulfilled in this paper.  

In this regard, using biochemical approach, the concentration of 

heavy metals in Eucalyptuses leaf samples was measured 

though GF-AAS device and the respective values were 

compared with control samples. In order to make the standard 

spectral signature of leaf samples, their spectral profiles were 

measured by ASD spectrometer. These spectra then were 

employed for classification purposes. For this aim, by 

employing the SAM classification methods as well as 

combination of biochemical analysis, spectral measurements of 

samples and hyperspectral images of EO-1 satellite, the spatial 

distribution of heavy metals in the region was determined. To 

achieve this goal, the spectral signature of those samples whose  

As and Pb values were higher than others inputted to the SAM 

algorithm. The distribution of polluted and unpolluted areas 

then was carried out by classification methods.  

Results showed that Eucalyptus trees accumulates the heavy 

metals of As and Pb with the average concentrations equalling 

9.98 and 14.31 ppb while compared with the relevant control 

samples equalling 2.32 and 8.98 ppb, respectively. Combination 

of biochemical and hyperspectral data analysis also proved that 

by increasing concentration of As and Pb, the spectral profiles 

of all samples for the visible and near infrared regions were 

changed while compared with control sample. For the 1st and 5th 

samples containing the high levels of As and Pb, there were also 

two weak reflectance peaks in the range of 940-1120 nm. So, it 

can be concluded due to high amount of heavy metals in the leaf 

samples, some variations will be occurred in their spectral 

profiles.  
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