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ABSTRACT: 

 
Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, 

unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples 

exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also 

proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts 

including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected 

unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples 

in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that 

through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods 

and increase classification accuracy. 

1. INTRODUCTION 

Feature extraction is one of the efficient approaches for 

overcoming Hughes phenomenon (Hughes, 1968) in 

hyperspectral image classification. In feature extraction, a 

transformation is applied by which all pixels in hyperspectral 

images are transferred from a space with dimension ‘d’ to a 

space with dimension ‘r’ (r ≤ d) (Jia et al., 2013; Hosseini and 

Ghassemian, 2015; Imani and Ghassemian, 2015a; Imani and 

Ghassemian, 2015b). Feature extraction algorithms can be 

divided into supervised, unsupervised and semisupervised ones. 

Supervised methods use Labeled samples so they are usually 

appropriate for classification purposes (Kamandar and 

Ghassemian, 2013; Imani and Ghassemian, 2014; Imani and 

Ghassemian, 2015c; Imani and Ghassemian, 2015d). They find 

a low dimension space where all labeled samples are provided. 

However supervised FE methods will not be prosperous if a 

limited number of training samples exist. In this situation 

unsupervised and semisupervised feature extraction methods 

show better performance because they can use all pixels in 

hyperspectral images. 

 

Principal component analysis (PCA) (Fukunaga, 1990) and 

locality preserving projection (LPP) (He and Niyogi, 2004) are 

Commonly used unsupervised feature extraction methods. They 

use all pixels in hyperspectral image without knowing their 

labels. PCA maintains general information of data by 

maximizing covariance matrix. LPP preserves local structure of 

data by forming adjacency graph. semisupervised feature 

extraction algorithms use unlabeled samples beside labeled 

samples. Among which are semisupervised Marginal Fisher 

Analysis (SSMFA) (Huang et al., 2012), semisupervised local 

discriminant analysis (SELD) (Liao et al., 2013) and 

semisupervised feature extraction based on supervised and 

fuzzy-based linear discriminant analysis (SLDA) (Li et al., 

2015).  These methods maintain general structure of data and 

increase class separability by using unlabeled and labeled 

samples. 

 

All unlabeled samples can be applied in unsupervised or 

semisupervised methods. A hyperspectral image has millions of 

pixels and using all of them increases storage and calculation 

costs. So, some unlabeled pixels can be applied in feature 

extraction process. Chang et al. (2014) defined unlabeled pixels 

pursuant to the Voronoi cells by using labeled pixels. Shi et al. 

(2013) determined proper unlabeled pixels using multilevel 

segmentation results. But unlabeled samples are selected 

randomly in most semisupervised and unsupervised feature 

extraction algorithms. Randomly selected samples may include 

outlier or mixed pixels. Samples may be selected from a limited 

area. This way, they cannot be an appropriate representative for 

total data. Therefore, just some unlabeled samples are suitable 

to be used in feature extraction process. The aim followed by 

feature extraction in hyperspectral image processing is 

exploitation of obtained data in classification. So, best result is 

acquired when data obtained from feature extraction methods 

that use selected unlabeled samples increase classification 

accuracy. 

 

This article illustrates the importance of selecting appropriate 

unlabeled samples used in feature extraction methods. Also it 

proposes a new method for unlabeled samples selection using 

spectral and spatial information. Our proposed method has four 

parts including: PCA, prior classification, posterior 

classification and sample selection. As hyperspectral image 

passes these parts, selected unlabeled samples can be used in 

arbitrary feature extraction methods. In this article, unlabeled 

selected samples are used in unsupervised LPP and 

semisupervised SSMFA. We demonstrate that the performance 

of SSMFA and LPP with selected samples is significantly better 

than SSMFA and LPP, which use random samples. The 

experimental results on Pavia University (PU) and Indian Pines 

(IP) data sets show that appropriate unlabeled samples improves 

the performance of semisupervised and unsupervised feature 

extraction methods and increases classification accuracy. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-411-2015

 
411



The remaining is organized as followed: next section, details 

proposed method for unlabeled samples selection. Section 3 

overviews LPP and SSMFA methods. Experimental results are 

reported in the fourth section and last section concludes the 

paper. 

 

2. THE PROPOSED SELECTION METHOD 

A hyperspectral image has millions of pixels and using all of 

them increases storage and calculation costs. So, some 

unlabeled pixels can be applied in feature extraction process. 

We propose a new method for selecting unlabeled samples in 

this article. The method includes four parts including: PCA, 

prior classification, posterior classification and sample 

selection.  

 

2.1 PCA 

In the first part, due to limitation in number of training samples 

and broad dimensions, PCA is used to decrease features. Let 

𝑋𝑑×𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛] be the original data and 𝑋𝑑×𝑛𝑡

𝑡 =

[𝑥1, 𝑥2, … , 𝑥𝑛𝑡
] be the training samples. Where n is the number 

of total samples, 𝑛𝑡 = ∑ 𝑛𝑖
𝑞
𝑖=1  is the number of training 

samples, 𝑛𝑖 refer to the number of training samples in the ith 

class, q is the number of classes and d denotes the number of 

spectral bands. 𝑌𝑟×𝑛 = 𝑇𝑃𝐶𝐴 × 𝑋 and 𝑌𝑟×𝑛𝑡

𝑡 = 𝑇𝑃𝐶𝐴 × 𝑋𝑡 are 

projected data using PCA transformation matrix (𝑇𝑃𝐶𝐴). r is the 

dimensionality of the projected data (𝑟 < 𝑑). 𝑌 and 𝑌𝑡 are used 

in prior classification part. In the experiments, the number of r 

is empirically set 𝑟 = 5 for 𝑛𝑖 = 10 and 𝑟 = 6 for 𝑛𝑖 = 15. 

 

2.2 Prior classification 

Prior classification is carried out using Gaussian maximum 

likelihood (GML), support vector machine (SVM), and K 

nearest neighbor (KNN) classifiers (Duda et al., 2001; Pal and 

Mather, 2005). Classification results are obtained in the form of 

classification map. In classification map, a label (𝐿𝑖 = 1, … , 𝑞) 

is allocated to each pixel 𝑥𝑖.  

 

The number of neighbors 𝐾 = 4 for KNN classifier is chosen by 

experiments. Radial basis kernel function (RBF) is used for 

SVM classifier defined in LIBSVM (Chang and Linin, 2008). 

The five-fold cross validation is used to choose the optimal 

penalty parameters C and kernel parameter g in SVM.  

 

2.3 Posterior classification 

Posterior classification includes two steps to determine final 

label of each pixel. Firstly, primary label of each pixel is 

specified using classification maps. Label 𝐿𝑖 will be allocated to 

𝑥𝑖 if it holds the label in all three classification maps. 

Otherwise, a zero label is considered for the pixel. In second 

step, final label of each pixel is obtained using labels in its 

spatial neighborhood. If, at least, five pixels in 8-spatial 

neighbors of central pixel 𝑥𝑖  contain label 𝐿𝑖, this label will be 

kept for 𝑥𝑖, otherwise, its label will change to zero. 

  

The objective of second and third sections is to put mixed pixels 

aside using spectral and spatial information. Mixed pixels are 

consist of more than one type of land covering and exist 

because of limitation in spatial resolution. They often found in 

spatial border of classes. Mixed pixels cannot be perfect 

representative for classes. So they affect the efficiency of 

algorithms used to hyperspectral images feature extraction. 

 

2.4 Samples selection 

In final part, unlabeled samples are selected among pixels 

nearest to the mean of classes resulting in the absence of outlier 

samples in unlabeled ones. Now, we can use the unlabeled 

selected samples in arbitrary feature extraction. In this article, 

we use the unlabeled selected samples in unsupervised LPP and 

semisupervised SSMFA. 
 

3. LPP AND SSMFA  

3.1 LPP 

LPP is an effective unsupervised method to reduce features (He 

and Niyogi, 2004). Using LPP, local structure of data is 

preserved and adjacent samples will be similar in original and 

transferred space. In order for this, information of adjacent 

samples is used to form adjacency graph. Let 𝑋𝑑×𝑛𝑢

𝑢 =

[𝑥1, 𝑥2, … , 𝑥𝑛𝑢
] denote the unlabeled selected samples. Where 

𝑛𝑢 is the number of unlabeled samples. Each pair of unlabeled 

samples (𝑥𝑖 , 𝑥𝑗) are considered as nodes for the adjacency graph 

and an edge is added between 𝑥𝑖 and 𝑥𝑗  if they are among k 

nearest neighbors of each other. The weight matrix (A) of 

adjacency graph is defined as:  

 

𝑎𝑖𝑗 = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

𝑡
)                              (1) 

 

Where t is local scaling parameter. In this article 𝑡 = 𝑡𝑖 × 𝑡𝑗 

(Manor and Perona, 2005). Where 𝑡𝑖 = ‖𝑥𝑖 − 𝑥𝑖
(𝑘)

‖ is a local 

scaling for 𝑥𝑖 and 𝑥𝑖
𝑘 denotes kth nearest neighbors of 𝑥𝑖.  

Parameters k is not fixed and it is determined using 

experiments. In this article k is empirically set to 7. LPP 

transformation matrix (𝑇) is calculated as follows: 

 

𝑇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑇 𝜖ℜ𝑑×𝑟

(𝑇∗𝑆𝐿𝑇)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇∗𝑆𝑁𝑇 = 𝐼𝑟

                       (2) 

 

Where T* is transpose of T, 𝑆𝐿 = 𝑋𝑢𝐿𝑋𝑢∗
, 𝑆𝑁 = 𝑋𝑢𝐷𝑋𝑢∗

, D is 

diagonal matrix with 𝐷𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑛𝑢
𝑗=1  and 𝐿 = 𝐷 − 𝐴 is laplacian 

matrix. The solution is given by solving a generalized 

eigenvalue problem. 

 

3.2 SSMFA 

SSMFA is a semisupervised feature reduction method (Huang et 

al., 2012). In SSMFA geometric structure of labeled and 

unlabeled data is preserved and labeled data from variable 

classes are differentiated. In order for this, two between-class 

(Gb) and within-class (Gw) graphs are used. Let 𝑋𝑑×(𝑛𝑡+𝑛𝑢) be 

the total samples that first 𝑛𝑡 samples are labeled and the rest 𝑛𝑢 

samples are unlabeled. In Gb, each pair of labeled samples 

 (𝑥𝑖 , 𝑥𝑗) is considered as nodes for the graph and an edge is 

added between 𝑥𝑖 and 𝑥𝑗  if they have different class labels. In 

Gw, each pair of samples  (𝑥𝑖 , 𝑥𝑗) are considered as nodes for 

the graph and an edge is added between 𝑥𝑖 and 𝑥𝑗  if they have 

the same class labels or at least one of them is unlabeled and 

they are among k+ nearest neighbors of each other. The weight 

matrices 𝑊𝑏 of Gb and 𝑊𝑤 of Gw is defined as follows: 

 

𝑤𝑖𝑗
𝑏 = {

𝑎𝑖𝑗          𝑖𝑓 𝐿𝑖 ≠ 𝐿𝑗

0             𝑖𝑓 𝐿𝑖 = 𝐿𝑗
                            (3) 
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𝑤𝑖𝑗
𝑤 = {

𝛽𝑎𝑖𝑗                         𝑖𝑓 𝐿𝑖 = 𝐿𝑗                            

𝑎𝑖𝑗            𝑖𝑓 𝑥𝑖 ∈ 𝑁𝑘+(𝑥𝑗)𝑜𝑟  𝑥𝑗 ∈ 𝑁𝑘+(𝑥𝑖)

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

       (4) 

 

Where 𝑁𝑘+(𝑥𝑖) = {𝑥𝑖
(1)

, 𝑥𝑖
(2)

, … , 𝑥𝑖
(𝑘+)

} is the k+ nearest 

neighbors for 𝑥𝑖, 𝐿𝑖 be the 𝑥𝑖 label and trade-off parameter β > 1 

adjust the share of unlabeled and labeled data. 𝑎𝑖𝑗 =

exp (− ‖𝑥𝑖 − 𝑥𝑗‖
2

𝜎⁄ ) if  𝑥𝑖 and 𝑥𝑗  are among k nearest 

neighbors of each other. 𝑎𝑖𝑗 is calculated by all samples in 𝑋. σ 

is the local scaling parameter. In the experiments parameter β is 

empirically set to 10. The number of neighbors is set to 5 for 

𝑛𝑖 = 10 and 7 for 𝑛𝑖 = 15. σ is defined as t in LPP. SSMFA 

transformation matrix (T) is calculated as follows: 

 

𝑇 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑇 𝜖ℜ𝑑×𝑟

(
𝑇∗𝑆𝑏𝑇

𝑇∗𝑆𝑤𝑇
)                             (5) 

 

Where 𝑆𝑏 = 𝑋𝐿𝑏𝑋∗, 𝑆𝑤 = 𝑋𝐿𝑤𝑋∗, 𝐿𝑏 = 𝐷𝑏 − 𝑊𝑏, 𝐿𝑤 =

𝐷𝑤 − 𝑊𝑤 and D is diagonal matrix with 𝐷𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑛𝑢+𝑛𝑡
𝑗=1 . The 

solution is given by solving a generalized eigenvalue problem. 

 

4. EXPERIMENTAL RESULTS 

In order to evaluate the performance of proposed method, 

unlabeled selected samples are used in LPP and SSMFA. LPP 

and SSMFA performance using unlabeled selected samples 

(LPPUSS and SSMFAUSS) compared to LPP and SSMFA 

using random selected samples (LPPURS and SSMFAURS), is 

demonstrated using IP and PU data sets. 

 

IP is related to an agricultural-woodsy area obtained through 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

sensor from a test site in northeast of Indian Pine state. The data 

includes 224 spectral bands where after 24 noisy bands are 

removed, experiments are carried out on 200 bands. Each band 

consists of 145⨯145 pixels and it includes 21025 samples in 

total. The ground truth is designated into 16 classes. PU is 

related to Pavia University area in north Italy obtained by 

Reflective Optics System Imaging Spectrometer (ROSIS) 

sensor.  It includes 115 spectral bands where after 12 noisy 

bands are removed, experiments are carried out on 103 bands. 

Pavia University is 610⨯340 pixels image and it includes 

207700 samples in total. The ground truth differentiates 9 

classes. 

 

SVM and GML are used to classify hyperspectral images. RBF 

kernel is used for SVM classifier defined in LIBSVM. The five-

fold cross validation is used to choose the optimal parameters in 

SVM. The penalty parameter C is tested between {100, 101,..., 

104}, and the g parameter is tested between {100, 10-1,..., 10-8}. 

Classification results contain accuracy (Acc) and reliability 

(Rel) of classes, average accuracy, average reliability, overall 

accuracy and kappa coefficient (Cohen, 1960). 𝐴𝑐𝑐 = 𝛼 𝛽⁄ ×
100 and 𝑅𝑒𝑙 = 𝛼 𝛾⁄ × 100 where α is the number of samples 

classified correctly in related class, β is the total number of 

samples belonging to related class and γ is the number of 

samples classified correctly in related class. Overall accuracy is 

the percentage of correctly classified samples. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Average accuracy versus the number of extracted features for IP dataset, (a) GML classifier, 10 training samples, (b) 

GML classifier, 15 training samples (c) SVM classifier, 10 training samples and (d) SVM classifier, 15 training samples. 
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In order to examine performance of proposed method in 

classification problems, two experiments are carried out. In first 

experiment, we evaluate performance of proposed method in ill-

posed and poorly-posed classification problems for two 

datasets. 1400 unlabeled samples and 10 and 15 training 

samples are used from each class in ill-posed and poorly-posed 

classification problems respectively. Training samples and 

random unlabeled samples are chosen 10 times and the average 

results are reported. Average accuracy (%) versus number of 

extracted features is shown in figure 1 for IP dataset. Maximum 

average accuracy for (a) GML classifier, 10 training samples, 

(b) GML classifier, 15 training samples (c) SVM classifier, 10 

training samples and (d) SVM classifier, 15 training samples are 

obtained by 5, 6, 15 and 15 extracted features respectively. 

Figure 2 displays average accuracy (%) versus number of 

extracted features for PU dataset. Maximum average accuracy 

for (a) GML classifier, 10 training samples, (b) GML classifier, 

15 training samples (c) SVM classifier, 10 training samples and 

(d) SVM classifier, 15 training samples are obtained by 5, 5, 15 

and 15 extracted features respectively. 

 

 
 

 

Class LPPUSS LPPURS SSMFAUSS SSMFAURS 

Name of class 
# 

Samples 
Acc Rel Acc Rel Acc Rel Acc Rel 

Asphalt 6631 66.14 94.48 59.84 96.66 60.68 91.53 41.41 77.91 

Meadows 18649 70.67 85.54 63.68 86.43 69.05 88.82 52.08 88.23 

Gravel 2099 75.37 53.77 61.3 45.92 63.41 52.75 52.8 41.94 

Trees 3064 77.22 66.25 82.57 60.44 84.03 67.36 85.49 60.82 

Painted metals sheets 1345 99.39 97.84 99.18 96.36 99.23 99.97 94.99 98.82 

Bare Soil 5029 60.26 46.85 62.43 41.78 62.78 46.48 66.53 35.79 

Bitumen 1330 88.47 47.42 91.67 41.75 82.14 37.31 66.35 23.7 

Self-Blocking Brickes 3682 75.75 66.5 73.52 64.22 70.78 54.75 58.62 49.65 

Shadows 947 99.93 99.85 99.83 99.83 99.83 96.98 99.77 83.29 

Average Acc and Average Rel 79.25 73.17 77.11 70.38 76.88 70.66 68.67 62.24 

Overall Acc 71.99 67.81 70 57.97 

Kappa coefficient 64.5 59.82 62.28 49.08 

Table 1. Classification results for PU dataset obtained by SVM classifier, 10 training samples, 1400 unlabeled samples 

 and 15 extracted features 
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Figure 2. Average accuracy versus the number of extracted features for PU dataset, (a) GML classifier, 10 training samples, (b) 

GML classifier, 15 training samples (c) SVM classifier, 10 training samples and (d) SVM classifier, 15 training samples 
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Class LPPUSS LPPURS SSMFAUSS SSMFAURS 

Name of class 
# 

Samples 
Acc Rel Acc Rel Acc Rel Acc Rel 

Alfalfa 46 82.61 31.07 88.26 29.39 85.65 38.11 82.17 33.37 

Corn-notill 1428 41.19 45 36.08 43.7 48.68 46.15 41.68 42.5 

Corn-mintill 830 40.43 39.04 40.34 37.33 43.64 36.12 41.35 26.9 

Corn 237 60.59 29.13 60.25 28.98 53.33 25.22 47.51 26.48 

Grass-pasture 483 70.35 60 68.99 48.49 73.04 61.63 65.38 52.68 

Grass-trees 730 79.89 82.49 77.29 78.49 81.29 83.6 75.15 77.4 

Grass-pasture-moved 28 94.29 43.2 92.86 27.99 92.86 42.32 93.57 26.24 

Hay-windrowed 478 70.92 94.62 72.13 94.11 78.74 96.54 74.98 86.67 

Oats 20 91 18.86 94 17.55 92 28.78 92 23.06 

Soybeen-notill 972 47.24 42.73 48.64 42 42.8 39.06 35.58 33.61 

Soybeen-mintill 2455 45.59 64.97 43.95 63.56 43.34 63.82 38.17 54.56 

Soybeen-clean 593 41.59 25.79 40.67 24.59 37.27 37.58 24.28 33.97 

Wheat 205 95.9 86 90.34 71.15 96.59 75.2 89.66 62.98 

Woods 1265 69.11 90.52 62.1 89.47 74.25 90.74 70.99 90.16 

Buildings-Grass-Trees-Drives 386 42.75 34.8 29.12 28.98 42.9 42.03 34.35 38.96 

Stone-Steel-Towers 93 85.16 83.1 88.6 97.26 77.2 92.95 80.43 90.04 

Average Acc and Average Rel 66.16 54.46 64.6 51.44 66.48 56.24 61.7 49.97 

Overall Acc 54.17 51.51 55.28 49.49 

Kappa coefficient 48.8 45.92 49.91 43.42 

Table 2. Classification results for IP dataset obtained by SVM classifier, 10 training samples, 1400 unlabeled samples 

 and 15 extracted features 

 

 

Classification results in ill-posed classification problem using 

SVM classifier and 15 extracted features are reported in Table 1 

for PU and Table 2 for IP datasets. In second experiment, 

number of training samples and extracted features are fixed and 

number of unlabeled samples varies from 200 to 2000 with a 

step size increment of 200. Figure 3 shows Average accuracy 

versus the number of unlabeled samples for datasets using 10 

training samples, 5 and 15 extracted features by GML and SVM 

classifiers respectively. For both data sets, LPPUSS and 

SSMFAUSS have better performance compared to LPPURS 

and SSMFAURS in poorly-posed and ill-posed situations. For 

all methods, the average accuracy improves as unlabeled 

Figure 3. Average accuracy versus the number of unlabeled samples by 10 training samples and 5 and 15 extracted 

features for GML and SVM classifiers respectively (a) IP, LPP, (b) IP, SSMFA, (c) PU, LPP, (c) PU, SSMFA 
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samples increased in number. For IP dataset, maximum average 

accuracy in ill-posed classification problem with GML classifier 

using LPPURS and SSMFAURS features are 53.45% and 

38.46% respectively. These values are obtained using 2000 

unlabeled samples. But obtained average accuracy in the same 

classification problem with similar classifier are 53.77% using 

LPPUSS by 1000 unlabeled samples and 40.59% using 

SSMFAUSS by 1400 unlabeled samples. Similar results are 

acquired for datasets with GML and SVM classifiers. It can be 

derived from the results that unlabeled selected samples are an 

appropriate representative for total data because proposed 

selection method put mixed and outlier pixels aside using 

spectral and spatial information. According to experiments, 

LPPUSS and SSMFAUSS outperform LPPURS and 

SSMFAURS and they decrease storage and calculation costs 

using less number of unlabeled pixels. Results show that 

proposed unlabeled samples improve feature extraction methods 

performance and increase classification accuracy with limited 

training samples. 

 

5. CONCLUSION 

Selecting appropriate unlabeled samples has important role in 

the performance of semisupervised and unsupervised feature 

extraction methods. In this article, using pixels’ spatial and 

spectral information, a method is provided for unlabeled 

samples selection. Proposed method can solve problems 

resulted from random selection like outlier or mixed samples. 

Unlabeled salected samples can be use in any arbitrary feature 

extraction method. In this article, we use the unlabeled selected 

samples in LPP and SSMFA. Results show that LPP and 

SSMFA using unlabeled selected samples provide remarkable 

results in ill-posed and poorly-posed classification situations. 
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