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ABSTRACT: 

 

In order to understand the characteristics of the data collected by hyperspectral imaging systems, it is important to discuss the 

physics behind the scene radiance field incident on the imaging system. A dominant effect in hyperspectral remote sensing is the 

mixing of radiant energies contributed from different materials present in a given pixel. The basic assumption of mixture modelling 

is that within a given scene, the surface is covered by a small number of distinct materials that have relatively constant spectral 

properties. It is most common to assume that the radiance reflected by different materials in a pixel can spectrally combine in a linear 

additive manner to produce the pixel radiance/reflectance, even when that might not be the case e.g. where the mixing process leads 

to nonlinear combinations of the radiance and where the linear assumption fails to hold. This can occur where there is significant 

relative three-dimensional structure within a given pixel. Without detailed knowledge of the dimensional structure, it can be very 

difficult to correctly ‘‘un-mix’’ the contributions of the various materials. This work aims to evaluate the correctness of the linear 

assumption in the mixture modelling using some laboratory measurements. Study was conducted using some sheets made of 

cellulose materials of different colours in 400-800 nm spectral range. Experimental results have shown that a correction term must be 

applied to the gains and offsets in the linear model. The obtained results can be extended to satellite sensors that acquire images in 

the above mentioned spectral range. 
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1. INTRODUCTION 

The development of high spatial resolution airborne and 

spaceborne sensors has improved the capability of ground-

based data collection in many fields. In order to understand the 

characteristics of the data collected by hyperspectral imaging 

systems, it is important to discuss the physics behind the scene 

radiance field incident on the imaging system. The signal read 

by the sensor from a given spatial element of resolution and at a 

given spectral band is a mixing of components originated by the 

constituent substances termed endmembers (Chang 2007). The 

recognition that pixels of interest are frequently a combination 

of numerous disparate components has introduced a need to 

quantitatively decompose, or “unmix”, these mixtures. 

 

Collecting data in hundreds of spectral bands, hyperspectral 

sensors have demonstrated the capability of performing spectral 

unmixing (Harsanyi and Chang 1994, Neville, Staenz et al. 

1999, Keshava and Mustard 2002, Keshava 2003, Rogge, 

Rivard et al. 2006, Goodman and Ustin 2007). Spectral 

unmixing is the procedure by which the measured spectrum of a 

mixed pixel is decomposed into a collection of endmembers and 

a set of corresponding fractions, that indicate the proportion of 

each endmember present in the pixel (Keshava and Mustard 

2002). Analytical models for the mixing of disparate materials 

provide the foundation for developing techniques to recover 

estimates of the constituent substance spectra and their 

proportions from mixed pixels. A complete model of the mixing 

process, however, is more complicated than a simple 

description of how surface mixtures interact. Mixing models 

can also incorporate the effects of the three-dimensional 

topology of objects in a scene, such as the height of trees, the 

size and density of their canopies, and the sensor observation 

angle. The basic assumption of mixture modelling that the 

radiance reflected by different materials in a pixel can spectrally 

combine in a linear additive manner to produce the pixel 

radiance/reflectance, even when that might not be the case. For 

many situations, this is a reasonable assumption and with 

appropriate processing can lead to the consistent extraction of 

the various endmembers and their relative abundances. 

However, there are cases where the mixing process leads to 

nonlinear combinations of the radiance and where the linear 

assumption fails to hold. This can occur where there is 

significant relative three-dimensional structure within a given 

pixel and where the optical energy makes multiple bounces 

between objects before exiting in the direction of the sensor. 

Without detailed knowledge of the dimensional structure, it can 

be very difficult to correctly ‘‘un-mix’’ the contributions of the 

various materials.  

 

The literature and previous researches argued the non-linearity 

condition for unmixing. For instance, (Heylen, Burazerović et 

al. 2011) proposed an unmixing algorithm that is capable of 

extracting endmembers under nonlinear mixing assumptions. 

Their algorithm was based upon simplex volume maximization. 

In another study (Altmann, Halimi et al. 2012), it was assumed 

that the pixel reflectance are nonlinear functions of pure 

spectral components. Then, mentioned nonlinear functions were 

approximated using polynomial functions and led to a 

polynomial post-nonlinear mixing model. Finally, a Bayesian 
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algorithm and optimization methods were applied to estimate 

the parameters involved in the model. A generalized Bilinear 

Model of unmixing was also another nonlinear spectral 

unmixing model by which the spectral interaction of 

endmembers was considered.  

 

Despite the large number of works, there is no research for the 

validity assessment of linear mixing model especially in the 

laboratory level.  Therefore, this work aims to evaluate the 

correctness of the linear assumption in the mixture modelling 

using some laboratory measurements.  

 

The structure of the rest of this paper is as follows. In section 2, 

materials, the planned experimental set up and the spectral 

measurements are elaborated. Section 3 briefly describes the 

Linear Spectral Mixing (LSM) model with its traditional 

approach. Experimental results as well as the correction term in 

gains and offsets of the linear model are reported in section 4. 

Fifth section focuses on the justification of our research for real 

satellite-based images, while we draw our conclusion in section 

6.  

 

2. MATERIALS AND EXPERIMENTAL SET UP 

The validity assessment of linear spectral mixture model was 

done using a laboratory test. The experimental set up is 

introduced in the below subsections with great detail. 

Moreover, it is worth mentioning that the study was conducted 

on the 400-800 nanometres spectral range. This spectral range 

was chosen since there are many multi- or hyper- spectral 

sensors operating in the above-mentioned spectral range. 

 

2.1 Materials 

Study was done using some sheets made of cellulose materials 

of different colors (Red, Green and Blue). Spectral signatures of 

the sheets are shown in Figure 1. 

 

 
Figure 1: Spectral signatures of the cellulose papers in 400-800 

nm 

 

Figure 2, shows a general view of the corresponding paper 

sheets.  

 

 
Figure 2: A general view of the paper sheets 

2.2 Laboratory spectral measurements 

Spectral measurements were collected in a partly dark-room 

laboratory. Then, an ASD Field Spectroradiometer as well as its 

own halogen was used as the main part of the spectral 

laboratory measurement. The main characteristics of the ASD 

Field Spec3 are provided in Table 1 (Devices 1999).  

 

Table 1: Characteristics of the ASD sensor 

Wavelength 350-2500 nm 

 (VNIR-SWIR1-SWIR2) 
Spectral resolution 3 nm in 700 nm 
Sampling interval 1.4 nm 

 

Paper sheets were located in the spectralon height (7 cm) one 

after another on the ground. Thus the background was changed 

from red to green and finally to blue. The importance of paying 

attention to paper heights was because of the scale of our 

measurements in lab. Afterwards, considering the Field Of 

View (FOV) of the ASD which is equal to 25˚ in default, the 

Ground FOV (GFOV) was determined with a circle which has a 

diameter of 10 centimeters and the measurements’ height was 

fixed in 46 centimeters respect to the background’s surface. The 

schematic view of the mentioned experimental set up is 

presented in Figure 3.  

 

 
Figure 3: A schematic view of the experimental set up for 

spectral measurements in the laboratory 

 

In the next step, the fractional abundances of the understudy 

endmembers changed in various percentages presented in Table 

2. 

 

 B
a
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No. of 

Sections 

Green 

coverage 

(%) 

Red 

coverage 

(%) 

Blue 

coverage 

(%) 

1 6.44 11.57 10.65 

2 12.88 23.14 21.3 

3 19.32 35.1 31.95 

4 25.76 46.28 42.6 

5 32.2 57.85 53.25 

6 75 25 25 

- 50 50  

-  50 50 

- 50  50 

 

Different fractional abundances were prepared by putting 

various numbers of sections on the backgrounds. This process is 

shown in Figure 4.  
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Figure 4: Various abundances were measured using different 

number of colourful celloluse sections on the background. The 

FOV region was drawn by using graphical instruments. 

 

 

3. LINEAR SPECTRAL MIXTURE MODELING 

If the total surface area is considered to be divided 

proportionally according to the fractional abundances of the 

endmembers, then the reflected radiation will convey the 

characteristics of the associated media with the same 

proportions. In this sense, there exists a linear relationship 

between the fractional abundance of the substances comprising 

the area being imaged and the spectra in the reflected radiation. 

Hence, it is called the linear mixing model (LMM) (Cloutis 

1996, Chang and Heinz 2000, Meer and Jong 2001, Wim, 

Janssen et al. 2001, Chang 2003, Clark, Swayze et al. 2003, 

Keshava 2003, Chang 2007, Bannon 2009, Meer, Werff et al. 

2012). When M endmembers exist, each having L distinct 

spectral bands, and it is expressed as 

 

                                   Equation (1) 

 

where x is the L×1 received pixel spectrum vector, S is the L× 

M matrix whose columns are the L×1 endmembers, si, i=1,...,M 

, a is the M×1 fractional abundance vector whose entries are ai 

and w is the L×1 additive observation noise vector. 

 

Assuming that the linear mixing model holds, it is expected that 

the spectral signatures in calculation and observation being 

exactly the same. It means that if calculated and observed 

signatures are considered as y- and x- axes of a scatterplot 

respectively, then data points will be present on diagonal axis 

and the linear equation will follow the y=x (See Figure 5).   

 
Figure 5: The expected scatter plot when LMM holds. 

 

4. EXPERIMENTAL RESULTS 

The results of this laboratory experiment indicate that although 

there was a linear trend line for all data points (various 

abundances), this line was not coincide with the y=x. Therefore 

the assumption of linearity in the mixing model did not hold 

precisely. Hence, a correction term should be applied in the 

linear model before any unmixing purpose.  

Figure 6, shows the equation of the linear trendline and 

datapoints dispersion in the scatterplot.  

 
Figure 6: Observed points in the scatter plot, in the 400-800 nm 

spectral range. 

 

Consequently, a correction term must be applied to the gains 

and offsets in the linear model (in the 400-800 nm spectral 

range). This correction term is presented in Equation 2.  

 

 

                                        Equation (2) 

 

in which, Scorr  is the corrected spectral signature, SLSMA is the  

calculated spectra considering linear mixing model. 

 

 

5. JUSTIFICATION OF THE PROPOSED 

CORRECTION IN SATELLITE IMAGES 

Before drawing any firm conclusion about the proposed 

correction term, we should prove that our laboratory 

measurements can simulate the real satellite data. Therefore, we 

can compare the results with remotely- based images.  

 

First, the measurement height is scaled from around 600 km to 

46 cm, and this is the case for the radiation source. Second, the 

surface roughness of the sheets made of cellulose materials (in 

millimeter scale), is equivalent to the earth surface topography.  

The mentioned simulation is illustrated in Figure 7. 

 
Figure 7: A schematic view of the space-borne data acquisition 

and its simulation with our laboratory measurement from two 

3D surfaces 
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6. CONCLUSION 

The outcome of this laboratory test indicate that the presence of 

3D structures in the image cause a deviation from y=x linear 

equation. Hence, a correction term must be applied to the gains 

and offsets in the linear model.  

 

Since this study was done in 400-800 nm spectral range, results 

and the correction terms are proposed only for the same spectral 

range. Besides, it is expected that the correction terms differ in 

various spectral ranges; therefore we suggest continuing the 

work in other spectral ranges as well as other material types.  
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