
USING PARAMETERS OF DYNAMIC PULSE FUNCTION FOR 3D MODELING IN LOD3

BASED ON RANDOM TEXTURES

B.Alizadehashrafi

Faculty of computer arts

b.alizadehashrafi@tabriziau.ac.ir

Commission VI, WG VI/4

KEY WORDS: Dynamic pulse function, Random textures, Automatic 3D modeling, LoD3, building façade, CityGML,

ABSTRACT:

The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual

photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse

Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can

avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman,

2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that

have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an

XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this

research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble

to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of

DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by

utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to

CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and

window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014).

The concept behind DPF, is to use logical operations to project the texture on the background image which is

dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic

pulses starting from upper-left corner of the background wall in down and right directions respectively based on image

coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does

not project the texture on the background image. It is possible to define priority for each layer. For instance the priority

of the door layer can be higher than window layer which means that window texture cannot be projected on the door

layer. Orthogonal and rectified perpendicular symmetric photos of the 3D objects that are proportional to the real façade

geometry must be utilized for the generation of the output frame for DPF. The DPF produces very high quality and small

data size of output image files in quite smaller dimension compare with the photorealistic texturing method. The

disadvantage of DPF is its preprocessing method to generate output image file rather than online processing to generate

the texture within the 3D environment such as CityGML. Furthermore the result of DPF can be utilized for 3D model in

LOD2 rather than LOD3. In the current work the random textures of the window layers are created based on parameters

of DPF within Ruby console of SketchUp Trimble to generate the deeper geometries of the windows and their exact

position on the façade automatically along with random textures to increase Level of Realism (LoR)(Scarpino, 2010).
As the output frame in DPF is proportional to real geometry (height and width of the façade) it is possible to query

the XML database and convert them to units such as meter automatically. In this technique, the perpendicular terrestrial

photo from the façade is rectified by employing projective transformation based on the frame which is in constrain

proportion to real geometry. The rectified photos which are not suitable for texturing but necessary for measuring, can

be resized in constrain proportion to real geometry before measuring process. Height and width of windows, doors,

horizontal and vertical distance between windows from upper left corner of the photo dimensions of doors and windows

are parameters that should be measured to run the program as a plugins in SketchUp Trimble. The system can use these

parameters and texture file names and file paths to create the façade semi-automatically. To avoid leaning geometry the

textures of windows, doors and etc, should be cropped and rectified from perpendicular photos, so that they can be used

in the program to create the whole façade along with its geometries. Texture enhancement should be done in advance

such as removing disturbing objects, exposure setting, left-right up-down transformation, and so on. In fact, the quality,

small data size, scale and semantic database for each façade are the prominent advantages of this method.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-51-2015

51

1. INTRODUCTION

In fact there are many different methods of 3D modelling for

different purposes. For instance in order to have high accurate

3D models from heritage and historical landmarks the laser

scanning data acquisition technique and related devices has been

performed with a Trimble (Mensi) GS200. This device is a Time-

Of-Flight (TOF) laser scanner with a Field of View of 360° in

horizontal and 60° in vertical directions. It has a low beam

divergence and a typical accuracy of 1.4 mm at 50 m (Brutto and

Spera, 2011). The huge data size of point clouds and lots of

holes due to curvatures and missing geometries that cannot be

seen from the device position are some the problems which

should be solved after data collection. The holes can be filled by

utilizing application such as Image Master which comes along

with imaging total stations such as Top Con or Trimble. The

photogrammetric data acquisition also can be used for 3D

models by means of the ZScan system by Menci Software.

ZScan system is a 3D scanning instrument for point cloud

acquisition through a digital camera placed on a calibrated bar

and a software for image matching. The images acquisition is

performed translating the camera along a calibrated bar in three

different positions with a known baseline (Brutto and Spera,

2011). Since the image matching systems may cause heavy

overhead on the CPU (Central Processing Unit), the optimized

methods such epipipolar stereo geometry lines which can do the

matching process in 1D rather than 2D, can be used. Agisoft

PhotoScan software also is an application which can create point

cloud and low poly 3D models out of non-calibrated camera

images. For instance we used fifty five images from different

angles with a simple SUMSUNG SM-G530H with a focal length

of 3.3 and resolution of 3264x1836 and ISO 100 and Shutter

1/30 to create the 3D model of the ICE age sid famous dull

(10893 faces and 5544 vertices)see figure 1. It is possible to

export different 3D formats such as COLLODA, VRML, 3DS,

OBJ, KMZ and etc for different purposes such as Unity Game

Engine or Google Earth. The 3DS format can be converted to

CithGML via 3Ds Max and SketchUp to be used in

LandXplorer or CityServer3D.

Figure 1. The 3D model of famous ICE age Sid dull were created

by AgiSoft software.

In addition to the mentioned methods it is also possible to create

the 3D models from precise AutoCAD data by using SketchUp

Trimble (Alizadehashrafi and Rahman, 2011). Procedural

modelling or procedural texturing are computerized programs

which can be used to create the 3D model automatically or

texture the 3D model automatically. These techniques can be

used for the 3D models with repetitive structures such as

Petronas Twine Tower in KL.

SketchUp was developed by startup company @Last Software

of Boulder, Colorado, co-founded in 1999 by Brad Schell and

Joe Esch and debuted in August 2000 as a general-purpose 3D

content creation tool, and finally won a Community Choice

Award at its first tradeshow in 2000. On June 8 2005, Google

purchased the software and announced a free downloadable

version of Google SketchUp including integrated tools for

uploading content to Google Earth and to the Google 3D

Warehouse. Trimble Navigation acquired SketchUp from

Google on June 1, 2012 and in 2013 SketchUp 2013 was

released. SketchUp has a Ruby console, an environment for

codding in Ruby which supports software extensions for its

import and export (From Wikipedia).

The computer cannot understand the meaning of any element of

3D model without semantic information, database and external

code list. The external code lists are very useful for indexing all

the elements of a 3D model for inserting data types and their

values (Kolbe et al., 2005). Retrieving data from the MySQL

database which is connected to CityServer3D also can be done

based on queries on CityServer3D or phpMyAdmin interface.

There are two different kinds of thick (CityServer3D

AdminTool) and thin (Google Earth) servers. The thick servers

are dealing with thinner client side (Cityserver3D Viewer) and

the thin servers are dealing with thicker client side (Google Earth

application). It is possible to manage our own 3D models

database along with all of their elements and components within

CityServer3D on the server side but not on Google Earth server

which belongs to Google.

2. Ruby console in SketchUp Trimble

To The same concept of DPF can be used for the window layer

along with extra parameter of deepness of the windows for each

layer. In this case all the windows and doors and many other

geometries on the façade can be generated automatically by

codding the plugin and adding to the menu bar. The sematic

database can also be included within CityGML file. By

converting the 3D model to CityGML and importing to

CityServer3D the main building ID with all of its subgroups

along with semantic information will be available for adding

entities and relevant database and external code lists. It is

possible to have the same building in different LODs in the

same CityServer3D for different applications. The following

plugin Ruby code can represent the concept of DPF by detail.

The parameters can be measured from a rectified photo of the

façade by means of some markers on the façade. Parameters

such as height and width of the building, number of similar

windows in each floor and layer, deepness of the windows,

number of floors or levels, the height and width of the window

in each layer, horizontal and vertical distances between two

windows in each layer, the texture file name and path (which are

assumed 1.jpg , 2.jpg and 3.jpg in this code to created random

textures for higher LoR) are necessary for creating the façade

along with all the detailed geometries in LoD3 automatically

within a second. The complexity of the program is O (n2) as it’s

using two nested loops to create one layer of window

automatically.

require 'sketchup.rb'

UI.menu("PlugIns").add_item("Create Windows") {

createWindows

}

def createWindows

 hightBuilding = 64.m

 widthBuilding = 110.m

 numberOfWindows = 25

 deep = -0.2.m

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-51-2015

52

 levels = 8

 windowWidth = 1.8.m

 windowHight = 3.18.m

 horizontalCluster = 2.35.m

 verticalCluster =3.30.m

 horizontalDistanceUpperLeftCorner = 1.25.m

 verticalDistanceUpperLeftCorner=2.10.m

 model = Sketchup.active_model

 entities = model.entities

wall= entities.add_face [widthBuilding,0, 0], [widthBuilding, 0,hightBuilding],

[0,0,hightBuilding],[0,0,0]

z = hightBuilding - verticalDistanceUpperLeftCorner - windowHight

 for step in 1..levels

 x = horizontalDistanceUpperLeftCorner

 for step in 1..numberOfWindows

 x += windowWidth

 y = 0

 pt1 = [x, y, z]

 pt2 = [x, y, z + windowHight]

 pt3 = [x - windowWidth, y, z + windowHight]

 pt4 = [x - windowWidth, y, z]

 x += horizontalCluster

 new_WINDOW = entities.add_face pt1, pt2, pt3, pt4

 imdadr = Sketchup.find_support_file "/windows/" +

(1+rand(3)).to_s + ".jpg", "Plugins"

 mats = Sketchup.active_model.materials

 nwmat = mats.add "nmat1"

 nwmat.texture = imdadr

 new_WINDOW.material = nwmat

 pts = []

 pts[0] = Geom::Point3d.new(pt1)

 pts[1] = Geom::Point3d.new(1,0,0)

 pts[2] = Geom::Point3d.new(pt2)

 pts[3] = Geom::Point3d.new(1,1,0)

 pts[4] = Geom::Point3d.new(pt3)

 pts[5] = Geom::Point3d.new(0,1,0)

 pts[6] = Geom::Point3d.new(pt4)

 pts[7] = Geom::Point3d.new(0,0,0)

 new_WINDOW = new_WINDOW.position_material(nwmat,

pts, true)

 new_WINDOW.pushpull deep

 end

 z -= windowHight

 z -= verticalCluster

end

groupWINDOWS = ent.add_group new_WINDOW.all_connected

end

Figure 2. Represents the HFT4 building in Stuttgart in LoD2

with different layers for roof, wall, floor and windows.

In figure 2 the previous version of PDF in Java graphics and

JavaScript were utilized for pre-processing texture generation in

high quality and small data size without the use of Ruby Plugin.

There are many different methods to convert the 3D model in

SKP format to CityGML such as FME software or CityGML

plugin for SketchUp. To create your CityGML file form

SketchUp 3D models, it is possible to download the CityGML

plugin from http://www.citygml.de/index.php/sketchup-citygml-

plugin.html and extract the zip file to the plugins folder of

SketchUp 2013. Unfortunately the newer versions of SketchUp

such as 2014 and 2015 do not support the CityGML plugin.

Figure 3 illustrates the process of installing CityGML plugin and

exporting CityGML file from SKP file. Figure 4, illustrates the

Stuttgart HFT building in LOD2 within CityServer3D with the

data size of 15,891 bytes in CityGML format without textures

with the hipped roof type external code list as 1040 which is

defined for Germany ISO.

Figure 3. Installing CityGML plugins and exporting CitGML file

(Putrajaya in Malaysia).

Figure 4. Illustrates the Stuttgart HFT building in LOD2 in

CityServer3D (15,891 bytes in CityGML format) with the

hipped roof type external code list as 1040 which is defined for

Germany.

By utilizing the mentioned Ruby plugins for each side of the

façade and each layer separately, it is possible to create precise

3D model of HFT4 in LoD3 automatically within less than 10

minutes. Figure 5, represents the HFT4 building in Stuttgart

which is generated automatically via Ruby programming in

SketchUp Trimble within different layers such as celling,

column, windows, walls, roof, floor and stairs. Figure 6, is the

same building in CityServer3D with the hipped roof type

external code list in LoD2 and LoD3 (the size of CityGML file

in LoD3 is 1,482,276 bytes). It means that the size of the

CityGML file in LoD3 has a direct relationship with the number

of geometries in the building. In this example 1.5 Mbyte of

LoD3 is 100 times bigger than the same building in LoD2 which

was 15 KB.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-51-2015

53

Figure 5. Illustrates HFT4 in Stuttgart which is generated

automatically via Ruby programming in SketchUp Trimble.

Figure 6. Illustrates HFT4 in Stuttgart in CityServer3D in LoD3

and LoD2 (1,482,276 bytes in LoD3). Some layers became

invisible in CityServer3D.

Figure 7. Illustrates the Tabriz Islamic Art University in different

layers and entities.

Figure 8. Illustrates the process of defining some attributes

and variables for parking lots of staff members as an

example of semantic information on CityServer3D Admin

tool.

3. Conclusions and remarks

In this research parameters of DPF along with some additional

parameters for the deepness of windows and doors are utilized

to generate the 3D model in LOD3 automatically. The algorithm

is similar to DPF system with extra parameters such as deepness

of the windows and etc. In some buildings with huge number of

windows it is boring job to do the modeling in LOD3 manually

which can be very time consuming and targeting to non-precise

3D model. Window layers can be defined based on needs as

groups of windows for further investigation and data analysis.

The building might composed of many subgroups along with

semantic database in CityServer3D which can be queried based

on user requests. In the near future it is possible to make use of

this algorithm to generate LOD3 models from a whole urban

area to investigate illegal changes that might be done by many

people in residential and commercial areas. It is also possible to

analyses the shadows and the sun direction during the year for

installation of solar panels and targeting green university in Iran.

4. References

ALIZADEHASHRAFI, B. & BAIG, S. U. 2014. Framework for

Malaysian 3D SDI in CityGML. FIG2014.

ALIZADEHASHRAFI, B. & RAHMAN, A. CAD-based 3D

semantic modeling of Putrajaya. Proceedings of the Joint

ISPRS Workshop on 3D city modelling & applications and the

6th 3D GeoInfo conference, 2011.

ALIZADEHASHRAFI, B. & RAHMAN, A. A. 2013. Towards

Enhancing Geometry Textures of 3D City Elements.

Developments in Multidimensional Spatial Data Models.

Springer.

ALIZADEHASHRAFI, B., RAHMAN, A. A., COORS, V. &

SCHULZ, T. 2009. 3D navigation systems based on synthetic

texturing. WSCG2009, 6.

BRUTTO, M. & SPERA, M. 2011. Image-based and range-

based 3D modeling of archaeological cultural heritage: the

Telamon of the temple of Olympian Zeus in Agrigento (Italy).

International Archives of Photogrammetry, Remote Sensing and

Spatial Information Sciences, 38.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-51-2015

54

FROM WIKIPEDIA, T. F. E.

KOLBE, T. H., GRÖGER, G. & PLÜMER, L. 2005. CityGML:

Interoperable access to 3D city models. Geo-information for

disaster management. Springer.

MUSLIMAN, I. A., ALIZADEHASHRAFI, B., CHEN, T.-K. &

ABDUL-RAHMAN, A. 2010. Modeling visibility through visual

landmarks in 3D navigation using Geo-DBMS. Developments in

3D Geo-Information Sciences. Springer.

SCARPINO, M. 2010. Automatic SketchUp: Creating 3-D

Models in Ruby.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-1-W5-51-2015

55

