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Abstract  

Simulation of rainfall-runoff process is one of the most important research fields in hydrology and water resources. Generally, the models used in this section 

are divided into two conceptual and data-driven categories. In this study, a conceptual model and two data-driven models have been used to simulate rainfall-

runoff process in Tamer sub-catchment located in Gorganroud watershed in Iran. The conceptual model used is HEC-HMS, and data-driven models are neural 

network model of multi-layer Perceptron (MLP) and support vector regression (SVR). In addition to simulation of rainfall-runoff process using the recorded land 

precipitation, the performance of four satellite algorithms of precipitation, that is, CMORPH, PERSIANN, TRMM 3B42 and TRMM 3B42RT were studied. In 

simulation of rainfall-runoff process, calibration and accuracy of the models were done based on satellite data. The results of the research based on three criteria of 

correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE) showed that in this part the two models of SVR and MLP could 

perform the simulation of runoff in a relatively appropriate way, but in simulation of the maximum values of the flow, the error of models increased.  

1.Introduction  

The specialists and experts of water resources have always looking for a 

proper relationship between precipitation and runoff process. For this 

purpose, several methods have been used and even many software models 

have been developed. In a general classification, we can divide these 

models into two conceptual and data-driven models. Conceptual model 

considers the physics of the issue simulation of runoff through 

information of precipitation, but data-driven models only deal with 

exploration of the hidden relationship between the input (precipitation) and 

output (runoff) of the model. Therefore, implementation of the conceptual 

models requires much more information about the watershed.  

The study of published papers on the rainfall-runoff model show that the 

preliminary studies in this area date back to the mid-18th century. In 1851, 

an Irish engineer named Thomas James Molonsy created the first rainfall-

runoff model, which was widely used. In 1921, Ross was the first person 

who used a distributed hydrological model based on the concept of a 

hydrograph. Similar studies were conducted in the US by Zack (1934), 

Turner and Bordvein (1941) and Clark (1945) and in England by Richards 

(1944). The hypothesis in all these models was linear routing of runoff. A 

large stride to solve this problem was expressed just a year after the concept 

of unit hydrograph was introduced by Robert Horton in 1993. He presented 

an article on the generation of runoff and declared that the runoff is 

generated when the intensity of precipitation rate exceeds the maximum 

capacity of soil penetration. In the 1960s, for the first time the computer in 

response to the current computing needs were widely used. One of the first 

and most successful models was Stanford Watershed Model (SWM) that 

was created by Norman Crawford and Ray Lindsay at Stanford 

University and then was entered the market under the commercial of HSP1 

and was widely used. In 1995, the US Environmental Protection Agency 

added the quality section to this model and this model survived as HSPF2 

and now is used with the same name. The internal and foreign studies in the 

field of rainfall-runoff modeling are separately presented in the following 

section.  

Nourian et al (2013) modeled daily rainfall-runoff of Gigle watershed in 

Ethiopia using satellite data and neural network. Satellite data used by them 

included precipitation data of CMORPH and TMPA 3B42RT. Before 

using artificial network model, they used wavelet transformation that is 

considered a pre-processing of dat. The results showed that the correlation 

between the simulated flow data and the observations without wavelet 

transformation is 0.80 and using the model of wavelet transformation is 

0.93. He et al. (2014) in a comparative study investigated the performance 

of artificial neural network, Fuzzy inference system and support vector 

regression in simulation of runoff. The results showed that all three models 

can be used to predict the flow as well, but in a severe investigation the 

support vector regression model acted better than the other two models.  

In this study, the efficacies of the conceptual and data-driven 

models in rainfall-runoff modeling in one of the Iranian 

watersheds, i.e., Gorganroud watershed will be compared. The 

conceptual model used in this research is HEC-HMS and the 

                                                           
1 Hydrological Simulation Program  
2 Hydrological Simulation Program-Fortran 
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data-driven models are artificial neural network (ANN) and 

support vector regression (SVR). Also, the satellite data of 

precipitation were used. This is because the precipitation data for 

many parts of the country are not available separately in terms of 

time and location, and if satellite data a good performance, they 

can be used as a database for future studies in all fields of water 

resources.  

In this study, at first the required information and statistics were 

prepared and satellite data were extracted from four satellites of 

CMORPH, PERSIANN, TRMM 3B42 and TRMM 3B42RT. 

After collecting data, at first a comparison  was done between 

satellite data of precipitation in daily and monthly scales with 

land data. Then the models of HEC-HMS, ANN and SVR will be 

applied for simulation of rainfall-runoff process.  

2.Models, data and methods  

The rainfall-runoff models  

The first view states that all models (even physical models) are 

basically the tools to extract existing data at different times and 

locations. In this view, the modeling method is experimental. In 

this method, the way of system function is determined according 

to existing data. In fact, by extracting the relationship between 

input and output data we can find out how the system works. This 

type of modeling which is called data-driven modeling is done 

regardless of the physical elements or process theory. This 

modeling is also called black box modeling. If we can make a 

proper relationship between the inputs and outputs in this model, 

we do not need to understand the physical relationships between 

the other elements in watershed. In this study, the data-driven 

models of MLP and SVR were used. ANN is one of the best 

models of artificial intelligence that due to its optimal efficiency 

in predictions has been considered in classification. ANNs are of 

several types that the most well-known one is Multilayer 

Perceptron neural network (MLP). In the present study, the used 

neural network was MLP network. This network is formed of an 

input layer, one or more intermediate layer (hidden) and an output 

layer. In this structure, all neurons of a layer are linked to all 

neurons of the next layer. In technical terminology, this 

arrangement forms a network with complete connections. In 

many complex mathematical problems which result to solve the 

complex nonlinear equations, an MLP network can be easily used 

by defining the weights and functions properly. Different 

stimulating functions are used according to the style of the 

problem in neurons. Training these networks is usually done by 

error post-propagation method.  

The second method used in the view is support vector machine 

(SVM). SVM is one of the data-driven models, which is not very 

old. This model after passing a training process is able to classify 

or predict the data. This method was originally introduced by 

Vapnik (1995) as a powerful way to categorize the data. In the 

present study, a regression form of SVM which is known as 

support vector regression (SVR) has been used to model rainfall-

runoff. In this section, SVR theory in estimating the functions is 

presented for estimation of different variables. Since, SVR is a 

data-driven model, it does not explicitly consider the physics of 

the problem in its predictions and needs training for estimating 

the new dependent variable from the independent variables. For 

this purpose, a set of available data must be given to SVR as the 

information of the training stage, and then it can be used as a 

simulating model. Vapnik (1995) defined two functions to design 

SVR. The first function calculates the error or deviation of 

calculated values by SVR from the observed values during the 

training process and the second function is a linear function that 

calculates the weight and deviation of output data per input data 

values.  

The establishment of this relationship is sometimes very complex, in this 

case, physical interpretations are required and their theoretical analysis alone 

can not be responsible. The second view states that the models should 

reflect the user’s physical receiving from the processes involving the 

modeling event as far as possible. Just by using this type of modeling, the 

user can be sure that the predictions out of the range of the observed data, 

that is, predictions for future in terms of time and place are reliable. 

In this view, modeling is done inferentially; in fact, this type of modeling is 

the conceptual modeling based on the physics of the problem. For modeling 

the process of rainfall-runoff, the conceptual models needs the interaction of 

the two processes of surface and subsurface flows and also the processes of 

evaporation, perspiration and melting of snow. In this study, the conceptual 

model of HEC-HMS was used in order to model the process of rainfall-

runoff. HEC-HMS software is hydrological modeling software of 

simulation type with capability of optimization of parameters. This 

software was designed by the US Army Hydrologic Engineering Center 

(HEC). This engineering center has so far produced various hydrologic 

modeling software tools such as PRECIP (1989), HEC-IF (1989), HEC-

IFH (1992) and HEC-1 (1998). HEC-1 software is, in fact, the first version 

of HEC-HMS software that then, version  2 and 3 of this software were 

entered the market. The latest version of this software is version 3.5 that 

was released in 2010. Modeling in HEC-HMS software is of conceptual 

type. For conceptual and distributional modeling in a watershed, 

hydrologist faces with a wide variety of the geological features, soil, 

vegetation, land use, and topographic characteristics that affect the 

relationship between precipitation and runoff. But the use of such models is 

difficult for users due to two following reasons: First, a massive influx of 

information is required that most of them are not directly measurable; and 

second, the powerful computing resources are required.  

But there are many points in a watershed that have similar hydrologic 

behaviors, that is, they are similar  in balancing water and producing runoff 

in surface and subsurface flows. So by classifying the points of the 

watershed in terms of their hydrological similarities, there is the possibility 

of creating simple forms of distributed models based on the distribution of 

basic hydrological responses in watershed and without need to check each 

point individually. Therefore, in HEC-HMS software for modeling 

different processes effective in creating runoff in the watershed (ponds, 
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potholes, infiltration, etc.), several storage elements are used and during 

precipitation and the period between precipitations they become full and 

empty alternatively. If each of the reservoirs is filled, then it is assumed that 

the additional precipitation reaches the canal as runoff (fast runoff). Also, the 

storage element is allowed to discharge the reservoirs at time intervals 

between precipitations (slow runoff) and with this the flow is returned to the 

river (river’s basic flow) and thus the reservoir turns back to the initial state 

before precipitation. Evapotranspiration from each of the reservoirs is 

done over time between precipitations.  

Case study  

Gorganroud watershed is located in the northeastern plateau of 

Iran plateau and is considered as one of the second grade 

watersheds of the eastern margin of the Caspian Sea, which is 

limited to  Atrak watershed from the north, Alborz mountains and 

central desert watershed from the south, Heraz Nekah watershed 

from the northwest and to Kopeh Dagh Heights and Gharaghom 

watershed from the east and southeast. Gorganroud Watershed is 

located between the geographical coordinates of 53º 57΄ to 59º 3΄ 

east longitudes and 36º 57΄ to 38º 17΄ north latitudes. The highest 

point of the watershed has 3,200 meters height. The area of the 

watershed is 11300 km2 and its important rivers are Gorganroud, 

Gharasou, Zaw, Gharachai and Mohammadabad. The watershed 

is mountainous and plain areas and 55% of it is plain area.  

In this study, simulation of daily flows of Tamer catchment as one of the 

catchments of Gorganroud watershed is studied. The area of the 

Gorganroud watershed in Golestan province is 1525.3 square kilometers 

and is geographically in the range of 37º 24  ́to 37º 49  ́of the north latitude 

and 55º 29  ́to 56 º 4  ́east longitudes. The highest point is in the region of 

Khoshyeillagh in the south of the watershed with height of 2098m and the 

lowest point is the south of watershed at Golestan Dam II with a height of 

117m above sea level. The gravity center of the watershed geographically is 

located in the north latitude of 37º 36  ́19΄́  and east longitude of 55º 

47  ́ 46΄́ at the height of 900m. Fig. 2 shows the location of tamer 

Watershed. In this watershed, there are a limited numbers of rain 

stations. Most of these stations have been equipped with short term 

recording data, except Tamer Station which has daily records of 

precipitation for past 40 years. Also, we have used the statistics of 

Tamer hydrometric station at the output of the watershed as the 

observed runoff for calibration and evaluation of the model.  

In this study, daily precipitation data recorded in the four satellite 

algorithms along with land data were used. These four databases 

include data from satellites of CMORPH, PERSIANN, TRMM 

3B42 version 7and TRMM 3B42 RT version 7 that have been 

used in the present study.  

CMIRPH model was proposed by Joyce et al (2004) in the 

National Oceanic and Atmospheric Administration  (NOAA). The 

output of this model is the precipitation rate based on the satellite 

images and is available in NOAA site at address 

ftp://ftp.cpc.ncep.noaa.gov. Spatial and temporal resolutions of 

the model were 3 hours and 0.25 degrees. Another version of the 

model has been presented that has a spatial and temporal 

resolution of 30 minutes and 8 km; but its data is only available 

for the last two months. This model covers from 60º of south 

latitude to 60º of north latitude. Passive microwave data in 

CMORPH model are provided in DMSP13, DMSP14 and 

DMSP15 satellites by SSM/I sensor, in NOAA15, NOAA16 and 

NOAA17 by AMSU-B sensor and in TRMM satellite by TMI 

sensor. Infrared images are obtained via Metrosat-5, Meteosat-7, 

GOES-8, GOES-10 and GMS-5 satellites (Joyce et al., 2004).  

PERSIANN model is a precipitation estimation algorithm using 

remote sensing by using artificial neural network. Kou et al. 

(1999) developed this model at the University of Arizona. The 

basic algorithm of the model is based on neural network model 

and the inputs of the basic model is the high temperature of the 

cloud resulted from infrared satellite images of the cloud through 

the earth-circuit satellites including GoEs8, GoEs9 and GMS. The 

main characteristic of the earth-orbited satellite images is their 

high temporal resolution; but these images have low spatial 

resolution, because the distance of these satellites from the earth 

is more than that of polar orbit satellites. Using these images, 

PERSIANN estimates precipitation intensity at land surface 

(Hang et al., 2004). In order to enhance the spatial resolution, an 

algorithm is created using images of TRMM, NOAA-13 and 

NOAA-14 satellites that are of polar orbit type and also by using 

artificial neural network, spatial resolution of 0.25×0.25 degrees 

at the tropical area and at temporal steps with 0.5 hour (Seroshian 

et al., 2002). Data  of this database are available at address: 

http://chrs.web.uci.edu. 

Tropical rainfall measurement model (TRMM) began in 1997. 

This is a part of the international project of NASA and its purpose 

is to obtain an accurate estimation of the precipitation in the 

tropical area and subtropical regions. TRMM satellite was 

launched by the United States and Japan in 1996. This satellite 

has been equipped with sensors such as precipitation radar (PR), 

microwave painter, visible infrared searcher (VIRS). This base 

has different versions. For example, TRMM 3A12 product 

provides the mean precipitation value and measures 14 vertical 

profiles of precipitation water, cloud ice and latent heat. The 

resolution of data of this precipitation product is 0.5×0.5 

longitude and latitude degrees and covers monthly time period. Its 

spatial coverage is also between 40º of longitude to 40º of 

latitude. The data of this product is available from December 

1997. Another version is TRMM3B42. These data are for a daily 

period and have a spatial resolution of 0.25×25 degrees. In 

TRMM 3B42 database, the data of the ground stations are also 

used. Also, the data of  network satellite algorithms of 

geographical precipitation climate center (GPCC) that has been 

established by Germany are combined with satellite estimations 

of this base. Network precipitation data from TRMM 3B42 are 

available from 1988 to date with a two-month delay and 

0.25×0.25 spatial resolution. Spatial coverage of these data is 
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from 50 degrees of south to 50 degrees of north and from 180 

degrees of west to 180 degrees of east. In addition to data of 

TRMM 3B42, the data of TRMM 3B42RT that is a near real time 

version were also used. The data of this database are also 

available at address: http://disc2.nascom.nasa.gov/tovas. 

3. Discussion and results  

In this research, satellite data were used for training the models . At the 

accuracy measurement stage, the global data were used. In this method, 

MLP, SVR and HEC-HMS models were trained with each others.  

Comparison of the land and satellite precipitations:  

The accuracy of satellite data, in addition to the conventional measures of 

correlation coefficient and root mean square error, was done based on some 

other criteria. In this part, three criteria of probability of detection (POD), 

false alarm ratio  (FAR) and critical success index (CSI) were used, which 

are defined as:

 RRRN

RR
POD


  , 

NRRR

NR
FAR


  

and 
NRRNRR

RR
CSI


  

Where, R indicates the presence of rainfall and N indicates lack of 

precipitation. In each combination, the first letter indicates the station and the 

second letter indicates the satellite data. For example, NR represents the 

number of days that the precipitation has not occurred in the station, but 

satellite data show precipitation. In the best possible state, the values of 

POD, FAR And CSI are 1, 0 and 1 respectively. Based on performed 

comparison of satellite data, TRMM 3B42 shows the highest correlation 

with land data precipitation during the years of 2003-2004 to 2007-2008. 

Also, based on the RMSE criterion, the data of CMORPH with slightly 

preference have acted better than other algorithms. Based on POD 

criterion, the data of PERSIANN model with POD equal to 0.602 

had better performance than other models. Also based on the FAR 

criterion, the PERSIANN model had the best performance among 

the four studied algorithms and based on the CSI, the PERSIANN model 

has acted better than other models. Table 1 shows the values of the 

discussed parameters for all algorithms. 

  

Evaluation criteria  

To evaluate the model  and compare the results, three evaluation 

criteria were used including correlation coefficient (R), root mean 

square error (RMSE) and mean absolute error (MAE). These 

criteria are defined as follows:  
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In these relations, Oi is the observed values at ith time step, fi is 

the value of simulated flow at ith time step, O  is the mean value 

of the observed flow, 
f

is the mean of predicted values and n is 

the number of data. Any model that has higher R, and lower 

RMSE and MAE is more optimal.  

 

Table 1: The values of the efficacy criteria for comparing satellite data 

with daily precipitation data at Tamer station 

 CMORPH PERSIANN TRMM RT_TRMM 

Correlation 0.157 0.117 0.242 0.063 

RMSE 5.317 5.509 5.789 5.991 

POD 0.517 0.602 0.380 0.370 

FAR 0.675 0.659 0.704 0.709 

CSI 0.249 0.278 0.200 0.195 

According to the results presented in the table above, based on 

correlation coefficient criterion, TRMM algorithm has had the 

best estimation of the precipitation in the region. After that, 

TRMM RT, CMORPH and PERSIANN have reported the best 

performances respectively. Based on the three criteria of POD, 

FAR and CSI, the data of PERSIANN had higher accuracy. 
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Figure1: Daily precipitation of Tamer station along with precipitation reported by satellite data station  

According to the figures presented above, TRMM data had the 

nearest affinity with the observed data. 

Although in this study, we have used the daily time scale, we 

carefully considered the accuracy of algorithms in monthly scale. 

This is important since in most of researches in the field of water 

resource data, the monthly data are considered.  

 

 

 

 

Table 2: The values of the efficacy criteria for comparing satellite 

data with monthly precipitation data at Tamer station 

 CMORPH PERSIANN TRMM RT_TRMM 

Correlation 0.170 0.421 0.637 0.313 

RMSE 45.173 38.229 27.698 38.895 
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Figure 2: Monthly precipitation of Tamer station along with precipitation reported by satellite data station 

 

In this scenario, the satellite data were used at all stages of modeling. 

Therefore, the models were trained once for each algorithm and were tested 

at second stage. In this scenario, the models of MLP and SVR had a good 

performance, but the HEC-HMS model failed to model the rainfall-

runoff process well and presented unsatisfactory results; due to 

this reason, the results obtained by this model are not presented 

here, and we introduce this model as an improper model for using 

based on satellite algorithms. The reason for this may be insufficient 

precision of the data presented by CMORPH, PERSIANN, TRMM 3B42, 

and TRMM 3B42RT in daily scale. Since these conceptual models are 

concerned with physics of the problem, they cannot have a good 

performance with imprecise precipitations. While, the data-driven models 

with precipitation data that on average have a positive or negative bias 

towards real data can act properly. This means that, for example, if the data 

of PERSIANN generally estimate the precipitation 10 percent less than 

the actual value, the data-driven model, when they are trained with these 

data can act well at accuracy testing with data of the type of training data. 

The table below shows the relevant criteria of the efficacy. According to the 

results, the performance of data-driven models in most cases has improved  

 

 

 

than the second scenario. The reason of this may be found in the cause 

described a few lines earlier. Comparison of different models shows that the 

SVR has acted better than MLP and the results obtained by this 

model is superior to those of MLP in most cases. But this superiority is 

seen absolutely in comparison based on correlation coefficient, and based on 

other criteria none of the two models has decisive advantage on another. 

Table 3 shows the relevant criteria of the efficacy. 
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Table 3: The criteria of the efficacy in the simulation of the flow by different models based on satellite data 

TEST TRAIN    

MAE RMSE R MAE RMSE R    

1.098 1.685 0.493 0.516 1.746 0.567  HEC-HMS 

 

 

OBSERVED 

0.548 1.160 0.796 0.479 1.246 0.808  MLP  

0.534 1.141 0.796 0.331 1.095 0.869  SVR  

1.164 1.570 0.688 0.514 1.487 0.711  MLP CMORPH 

1.048 1.443 0.760 0.884 1.460 0.763  SVR  

1.237 1.525 0.659 0.603 1.655 0.624  MLP PERSIANN 

0.931 1.424 0.777 1.122 1.702 0.656  SVR  

0.628 1.230 0.765 0.585 1.335 0.784  MLP TRMM 

0.570 1.139 0.799 0.394 1.236 0.821  SVR  

0.698 1.481 0.672 0.569 1.566 0.672  MLP RT_TRMM 

1.423 1.625 0.675 1.195 1.703 0.689  SVR  

In comparing the efficacy of precipitation data of satellite bases, the data 

resulted from the TRMM model acted better compared to other satellite 

data. This superiority is more obvious, especially in the simulation of the 

flow using SVR model based on the data of TRMM. In general, the 

accuracy of simulation of flow in the data-driven models using satellite data 

can be reported as proper. It is necessary to note that the data-driven models 

use the flow rate from previous days and this strength covers considerably 

the shortcomings in the precipitation data of satellite algorithm. However, 

the data entered to data-driven models are much less accessible and lower 

the conceptual models.  

Figure 3 shows the time series simulated using data of CMORPH satellite. 

Based on figure, there is a good agreement between the observed and 

simulated time series. SVR model has overestimated a little the simulated 

value in the training stage. This overestimation is also observed in MLP 

model, but it is milder. 
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Figure 3: The simulated time series of the flow by models of MLP and SVR according to CMORPH satellite data  

Figure 4 shows the time series simulated using data of PERSIANN satellite. 

According to the figure, at the beginning of period of authenticity 

verification severe sudden changes are observed in the graph, which is 

probably due to wrong estimation by PERSIANN algorithm. These sudden 

changes are more visible in the MLP model than SVR. 
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Figure 4: The simulated time series of the flow by models of MLP and SVR according to PERSIANN satellite data  

Figure 5 shows the time series simulated using data of TRMM 3B42 

satellite. The peak values during calibration period have been 

underestimated than the observed values in most cases, which its reason is 

the absence of the appropriate estimation of precipitation by TRMM in 

those days. Also, at the beginning of the accuracy verification period, both 

models have underestimated the flow rate to real amount. 
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Figure 5: The simulated time series of the flow by models of MLP and SVR according to TRMM satellite data  

Figure 6 shows the time series simulated using data of TRMM 3B42RT 

satellite. The peak values during calibration period have been 

underestimated than the observed values in most cases. Also, in most cases 

the SVR model has simulated the amount of the flow rate more than 

observed values of simulation. This has less happened in the accuracy 

verification period. 
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Figure 6: The simulated time series of the flow by models of MLP and SVR according to RT_TRMM satellite  

4.Conclusion  

Simulation of the river flow is one of the most important fields of research 

on water resources. This simulation is usually carried out in the form of a 

relationship between precipitation and runoff. Therefore, having the amount 

of precipitation, we can estimate the flow rate. Thus in the research, we 

studied the modeling of the rainfall-runoff process at Gorganroud 

watershed. Since the elimination of the effect of human activities and 

construction of water control structures are often not properly done, in this 

paper, Tamer catchment which is located at the upstream of Goranroud 

watershed was considered as the sample of the watershed and the rainfall-

runoff modeling was done based on this catchment.  

Another important element of this study was the evaluation of the accuracy 

of the satellite data in the simulation of the rainfall-runoff process. Therefore, 

the daily information provided by four satellites presenting the precipitation 

rate, including CMORPH, PERSIANN, TRMM 3B42 and TRMM 

3B42RT was used. Also, the models used in this research included a 

conceptual model and the two data-driven models. The used conceptual 

model was HEC-HMS, and the data-driven models were MLP and SVR. 

The results were discussed in three general parts. At the first part, the 

accuracy of daily precipitation was carefully examined; then the 

performances of the three models of HEC-HMS, MLP and SVR were 

studied and the efficacy of the satellite data in the simulation of rainfall-

runoff was investigated. In this method, the satellite data were used both at 

the calibration stage and in the stage of accuracy verification.  

The results of investigation based on five criteria of correlation coefficient, 

RMSE, POD, FAR and CSI showed that the satellite data of TRMM 

3B42 had the highest correlation with the land precipitation during the 

water years of 2003-2004 to 2007-2008. Based on POD criterion, the 

data of PERSIANN model with POD equal to 0.602 had better 

performance than other models. Also based on the FAR criterion, the 

PERSIANN model had the best performance among the four studied 

algorithms and based on the CSI, the PERSIANN model has acted 

better than other models. 
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The results showed that the satellites have reported the amount of 

precipitation less than the real amount. In this regard, the total 

observed precipitation during the study period was 3036 mm, 

while the bases of CMORPH, PERSIANN, TRMM 3B42 and 

TRMM 3B42RT have reported the total precipitation equal to 

1520, 2536, 2924 and 2242 mm respectively. These bases have 

reported the data 1515, 500, 112 and 794 mm less than the 

observed values. Therefore, based on this criterion, the data given 

by TRMM have worked better than others. In the monthly scale 

that the comparisons were done based on correlation coefficients 

and RMSE, the TRMM 3B42 database with correlation of 0.64 

and RMSE equal to 27.7 has the best compatibility with 

precipitation data of Tamer station.  

Based on the modeling done, the models of SVR and MLP had a good 

accuracy. However, this good accuracy of MLP and SVR can be 

attributed to the flow rate of earlier days which have been considered as 

the input of the model. Because at locations that the peak of flow rate has 

occurred and the amount of precipitation corresponding to it must provide 

the prerequisites for estimating a reasonable amount for the models, the 

performance of precipitation data shows itself and the flow rate is 

underestimated. This case is more visible in the third scenario.  

In sum, based on the simulations done, we can state that the performance of 

the data-driven models has been better than that of conceptual model. Also, 

the simpler and faster usage, and the need to less data are the other strengths 

of these models. The SVR and MLP models both had acceptable 

performance, however in a severe investigation, the SVR model has acted 

better than MLP model. But it is necessary to note that the use of MLP is 

slightly faster than SVR, and also to obtain an optimal model, it is necessary 

that we only optimize the number of neurons, but in SVR we must 

determine the three parameters of C, ε, and γ properly in order the model has 

a good performance.  
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