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ABSTRACT: 

 

Airborne Light Detection and Ranging (LiDAR) generates high-density 3D point clouds to provide a comprehensive information from 

object surfaces. Combining this data with aerial/satellite imagery is quite promising for improving land cover classification. In this 

study, fusion of LiDAR data and aerial imagery based on Bayesian theory in a three-level fusion algorithm is presented. In the first 

level, pixel-level fusion, the proper descriptors for both LiDAR and image data are extracted. In the next level of fusion, feature-level, 

using extracted features the area are classified into six classes of “Buildings”, “Trees”, “Asphalt Roads”, “Concrete roads”, “Grass” 

and “Cars” using Naïve Bayes classification algorithm. This classification is performed in three different strategies: (1) using merely 

LiDAR data, (2) using merely image data, and (3) using all extracted features from LiDAR and image. The results of three classifiers 

are integrated in the last phase, decision level fusion, based on Naïve Bayes algorithm. To evaluate the proposed algorithm, a high 

resolution color orthophoto and LiDAR data over the urban areas of Zeebruges, Belgium were applied. Obtained results from the 

decision level fusion phase revealed an improvement in overall accuracy and kappa coefficient.  

 

1. INTRODUCTION 

Airborne Light Detection and Ranging (LiDAR) generates high-

density 3D point clouds to provide a comprehensive information 

of object surfaces. Recently, the use of LiDAR data has increased 

in many applications, such as 3D city modeling and urban 

planning. Although the spatial resolution of this data has 

intensely improved, however, the lack of spectral and textural 

information is still a big problem of LiDAR technology. On the 

other hand, high resolution aerial/satellite imageries offer very 

detailed spectral and textural information but poor structural 

information. Therefore, LiDAR data and aerial/satellite imagery 

are complementary to each other and, combining them is quite 

promising for improving land cover classification (Lee et al., 

2008; Li et al., 2007; Pedergnana et al., 2012; Rottensteiner et al., 

2005; Schenk and CsathA, 2002). 

Many methods for fusion of LiDAR data and multispectral 

aerial/satellite image have been proposed by researchers, in 

recent years(Li et al., 2013; Malpica et al., 2013; Schenk and 

CsathA, 2002; Sohn and Dowman, 2007; Trinder and Salah, 

2012; Yousef and Iftekharuddin, 2014). The majority of these 

studies have applied aerial image instead of satellite image as a 

complementary of LiDAR data. Moreover, there are a number of 

researches fused hayper-spectral image and LiDAR data for 

different applications(Bigdeli et al., 2014; Dalponte et al., 2008). 

Here, a few number of these studies are briefly discussed.  

Bigdeli et al. (2014) addressed the use of a decision fusion 

methodology for the combination of hyperspectral and LIDAR 

data in land cover classification. The proposed method applied a 

support vector machine (SVM)-based classifier fusion system for 

fusion of hyperspectral and LIDAR data in the decision level. 

First, feature spaces are extracted from LIDAR and hyperspectral 

data. Then, SVM classifiers are applied on each feature data. 

After producing several of classifiers, Naive Bayes as a classifier 

fusion method combines the results of SVM classifiers from two 

data sets. The results discovered that the overall accuracies of 
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SVM classification on hyperspectral and LIDAR data separately 

were 88% and 58% while the decision fusion methodology 

receive the accuracy up to 91%(Bigdeli et al., 2014). 

An analysis on the joint effect of hyperspectral and light detection 

and ranging (LIDAR) data for the classification of complex forest 

area based on SVM algorithm is proposed in (Dalponte et al., 

2008).   

Hong et al. (2009) proposed a fusion method by fusing the 

LiDAR points with the extracted points from image matching 

through three steps: (1) registration of the image and LiDAR data 

using the LiDAR data as control information; (2) image matching 

using the LiDAR data as the initial ground approximation and (3) 

robust interpolation of the LiDAR points and the object points 

resulted from image matching into a grid(Hong, 2009). 

Zabuawala et al. (2009) proposed an automated and accurate 

method for building footprint extraction based on the fusion of 

aerial images and LiDAR. In the proposed algorithm, first initial 

building footprint was extracted from a LiDAR point cloud based 

on an iterative morphological filtering. This initial segmentation 

result was refined by fusing LiDAR data and the corresponding 

colour aerial images, and then applying the watershed algorithm 

initialised by the LiDAR segmentation ridge lines on the surface 

were founded(Zabuawala et al., 2009).  

The fusion of aerial imagery and LiDAR data has been proposed 

to improve the geometrical quality of the building outlines 

(Rottensteiner et al., 2005). They are also applied to improve 

planar segmentation due to the complementary of these data 

sources (Khoshelham et al., 2008).  

In this paper, a multi-level fusion technique is proposed for land 

cover classification using LiDAR data and aerial imagery. This 

method is performed through four consecutive phases: pre-

processing, pixel-level fusion, feature-level fusion and decision 

level fusion. 
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2. NAÏVE BAYES FUSION METHOD  

The Bayesian algorithm combines training data with a priori 

information to calculate a posteriori probability of a hypothesis. 

So, the most probable hypothesis according to the training data is 

possible to figure out. The basis for all Bayesian Learning 

Algorithms is the Bayes Rule which is Equation 1. 
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Where,  

P(h) and P(D) are prior probabilities of hypothesis h and D, and 

P(h|D) and P(D|h) are probability of h given D and D given h, 

respectively.   

Here the conditional independence of the attributes of the 

instances is required for the use of Naïve Bayesian Classifiers. 

To brought it into formula, let X be a set of instances xi = (x1, x2, 

…, xn)  and w be a set of classifications wj  
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And ( )jP w is a priori probability of class wj.  

These formulae can be used in both feature and decision level 

data fusion. In the feature level case, extracted 

descriptors/features from a training data set are applied to 

calculate j(x | w )iP . A priori probability may also be calculated 

based on the size of the training data in each class. Estimated 

posterior probability in each classification may also be applied in 

decision level fusion. In this case, one can calculate a priori 

information of each classification using its resulted confusion 

matrix.  

 

3. HIGH RESOLUTION LIDAR AND IMAGE FUSION  

The proposed method for fusion of high resolution LiDAR data 

and aerial orthophoto is based on the flowchart shown in Fig. 1. 

First, in a pre-processing step, conversion of LiDAR point cloud 

into grid form and contrast enhancement of the orthophoto are 

performed. Then, classification of the area is executed in three 

sequential fusion levels: pixel level fusion, feature level fusion, 

and decision level fusion.  

As seen in Fig. 1, in pixel level fusion useful descriptors are 

calculated from both LiDAR and image. After that, extracted 

features are applied for classification of the area in three different 

strategies: (1) using merely LiDAR data, (2) using merely image 

data, (3) using all extracted features from LiDAR and image. 

Finally, all the classification results from these implementations 

are used in decision level fusion for making last decision about 

the pixels. Further details of the proposed method are described 

in the following sections. 

 

Figure 1. Flowchart of the proposed method 

 

3.1 Pre-Processing  

In the pre-processing phase, to simplify the process and, ability 

to deal with the LiDAR data as an image, irregular 3D point cloud 

is converted into regular form using interpolation techniques. 

Although, the interpolation process may cause the loss of 

information, however, it is negligible in this paper. Note, it is 

assumed that LiDAR data and aerial image are accurately 

registered. Moreover, histogram equalization of the color 

orthophoto is performed due to its effectiveness on contrast 

enhancement.  

 

3.2 Pixel Level Fusion  

The aim of pixel-level phase is to generate the proper descriptors 

for both data. In this step, eight descriptors are extracted on 

LiDAR data (four features) and aerial image (four features). 

These features are selected based on the previous literatures of 

LiDAR or aerial image classification (Bigdeli et al., 2014; Li et 

al., 2007). For example, “the height differences between the first 

pulse range and DTM “to distinguish buildings and trees from 

other objects and, also, “the height differences between the first 

pulse and the last pulse” to distinguish tree class from other 

classes can be seen in several studies (Bigdeli et al., 2014; Li et 

al., 2007; Rottensteiner et al., 2005). These descriptors can be 

calculated using equations 4 and 5.  “First pulse range” and “First 

pulse Intensity” are the other descriptors which are extracted 

from LiDAR data.  

DTM - range pulse Last nDSM   
)4( 

Range pulse LastRange Pulse First

Range pulse Last-Range Pulse First
DSIN


  

(5) 

From the orthoimage four descriptors of “Red band”, “Green 

band”, “Blue band” and “Green-Red Vegetation Index” are 

considered for classification. Here, therefore, only GRVI feature 

is calculated through pixel level fusion of Red and Green 

channels. Same as NDVI in remote sensing data analyses, GRVI 
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may help to distinguish vegetation area from other objects.  

Equation 6 shows the fusion formula for calculating this feature.  

RG

R-G
GRVI


  

(6) 

3.3 Feature Level Fusion 

In the feature-level fusion phase, the area are classified into six 

classes of “Buildings”, “Trees”, “Asphalt Roads”, “Concrete 

roads”, “Grass” and “Cars” using aforementioned extracted 

features from LiDAR and image data. Training and check data 

set of each class are manually selected for the classification. 

Three different classifiers are implemented in this level. (1) a 

classifier which merely used LiDAR data, (2) a classifier which 

merely used image data, (3) a classifier that applied all extracted 

features from LiDAR and image data.  

Although in Naïve Bayes classifier as a soft classifier 

membership degrees of each pixel to the classes are calculated, 

here, only one class with higher degree of membership 

(maximum probability), which is shown in Equation 2, is 

selected. However, the degree of membership to the classes are 

kept to be used in the next phase of the algorithm, which will be 

described in the following section.  

3.4 Decision Level Fusion 

In this step, three previous classification results are integrated for 

making final decision about a pixel. There are different decision 

fusion techniques in pattern recognition literature such as Simple 

Voting, Weighted Voting, Rule Based Fuzzy System, Dempster-

Shafer and Naïve Bayes. Voting and Weighted Voting algorithms 

can be applied for fusing crisp classification results while other 

methods would be able to integrate soft classification results.  

In this paper, the decision level fusion is implemented based on 

Bayesian theorem. For this purpose, Naïve Bayes provides a 

method for computing the a posteriori degree of membership, 

based on previous estimated degrees. In the resulted a posteriori 

degrees of membership of each pixel to the classes, the maximum 

degree can be considered as the final class label. Here, resulted 

confusion matrix for each classifier can be applied to estimate a 

priori probability of each class.  

4. EXPERIMENT AND RESULTS 

4.1 Dataset  

To evaluate the proposed algorithm, high resolution color 

orthophoto and LiDAR data over the urban areas of Zeebruges, 

Belgium were applied. The point density for the LiDAR sensor 

is approximately 65 points/m² and the color orthophoto were 

taken at nadir and have a spatial resolution of approximately 5 

cm. From this data set a building block which included 1.03 

million points was cropped as sample data. Selected area as a test 

data is depicted in Figure 2. 

 
a 

 

b 

Figure 2. Study area. a. High resolution aerial orthophoto. b. 

High resolution LiDAR point cloud. 

4.2 Results 

After generating regular LiDAR data with 5 cm spatial resolution 

from point cloud, and contrast enhancing of the orthophoto, in 

the pre-processing step, the features for both LiDAR and 

orthophoto were extracted. These features from LiDAR data and 

orthoimage are displayed in Figure 3 and 4, respectively.  

  
a b 

  
c d 

Figure 3. Extracted Features for LiDAR data. a. difference 

between last pulse and DTM. b. difference between first and 

last pulse range. c. First pulse intensity. d. First pulse range. 
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a b 

  
c d 

Figure 4. Extracted Features of orthophoto. a. Red channel. b. 

Green channel. c. Blue channel. d. NDGI. 

Sample data collection is the next step after feature extraction. In 

this case, as all the evaluation parameters are computed based on 

these samples, here, a huge number of sample data were 

collected. The collected sample data were divided into two 

groups of training and check data for calculating the probability 

density functions and confusion matrix, respectively. In this 

study, 421515 sample pixels were collected and 266156 and 

155359 sample pixels were collected as training and check data, 

respectively. Selected samples are shown in Figure 5. 

 
Figure 5. Manually observed sample data. 

After collecting sample data, Naïve Bayes classifiers were 

designed and executed on the sample data set in three different 

strategies. Naïve Bayes classifier is a soft classification technique 

and results degree of memberships for each pixel in different 

classes. In this case, the class with higher degree of membership 

(maximum probability) is selected for a pixel. The obtained 

classification results and corresponding confusion matrix can be 

seen in Figures 6-8. However, the degree of membership to the 

classes were kept to be used for decision level fusion.  

 

 

Figure 6. Obtained results from Bayesian classifiers based on 

merely orthophoto.  

 

 

 

Figure 7. Obtained results from Bayesian classifiers based on 

merely LiDAR feature space. 
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Figure 8. Obtained results from Bayesian classifiers based on 

LiDAR and image feature space. 
 

The results of three classification algorithm were finally 

integrated based on Naïve Bayes data fusion algorithm. Final 

classification results is shown in Figure 9. As can be seen from 

the figure, the confusion matrix obtained from fusion of previous 

classification presents more promising results. 
 

 

 
Figure 9. Final obtained classification from decision level 

fusion. 

4.3 Discussion 

Among the obtained three classifier in feature level fusion, the 

one which simultaneously used both LiDAR and Image features 

presented better results. Furthermore, fusing the three 

classification through Naïve Bayes classifier fusion method 

proved an improvement in classification results. Figure 10 shows 

resulted overall accuracy and kappa coefficient for all the 

classifications. As can be seen from the figure, the best 

performance was achieved for final decision level fusion while 

obtained results from merely image features was dispiriting. The 

performance of the classifier which used merely image features 

in detecting trees and cars classes was very disappointing. Low 

values of user accuracies for these classes in Figure 6 proved this. 

The overall accuracy and kappa coefficient of the classifier which 

used merely LiDAR features is approximately the same as the 

one which used all LiDAR and Image features. However, it is 

seen in Figure 7 that lack of spectral information in LiDAR data 

causes mixing grass, asphalt roads and concrete roads classes, 

especially in south-eastern part of the test area.  

 Moreover, as previously reported in researches multiple data 

resources obtained more promising results in comparison with 

each data resource individually(Bigdeli et al., 2014). 

 

Figure 10. Comparison between classification results. 

5. CONCLUSION 

In this paper, fusion of high resolution aerial orthophoto and 

LiDAR data based on Naïve Bayesian algorithm were discussed. 

Three different classification were designed using training data 

set: (1) using merely LiDAR data, (2) using merely image data, 

(3) using all extracted features from LiDAR and image. The 

results of these classification were integrated using Naïve Bayes 

algorithm. Among all the classification results, the results of final 

decision fusion were the best.  

Although the features and number of classes have important roles 

in classification, it is theoretically expected that the same results 

would be achieved for different feature spaces and number of 

classes. However, it is recommended to test the algorithm for 

other case studies. It is also suggested to test other decision fusion 

algorithm such as fuzzy inference system.  

REFERENCES 

Bigdeli, B., Samadzadegan, F., Reinartz, P., 2014. A decision 

fusion method based on multiple support vector machine system 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-589-2015

 
593



 

for fusion of hyperspectral and LIDAR data. International 

Journal of Image and Data Fusion 5, 196-209. 

Dalponte, M., Bruzzone, L., Gianelle, D., 2008. Fusion of 

hyperspectral and LIDAR remote sensing data for classification 

of complex forest areas. Geoscience and Remote Sensing, IEEE 

Transactions on 46, 1416-1427. 

GRSS_DFC, 2015. 2015 IEEE GRSS Data Fusion, 2015 IEEE 

GRSS Data Fusion Contest.  , in: IEEE (Ed.), Online: 

http://www.grss-ieee.org/community/technical-

committees/data-fusion” . 

Hong, J., 2009. Data fusion of LiDAR and image data for 

generation of a high-quality urban DSM, Proceedings of the joint 

urban remote sensing event. IEEE., Shanghai, China. 

Khoshelham, K., Nedkov, S., Nardinocchi, C., 2008. A 

comparison of Bayesian and evidence-based fusion methods for 

automated building detection in aerial data. International 

Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences 37, 1183-1188. 

Lee, D.H., Lee, K.M., Lee, S.U., 2008. Fusion of lidar and 

imagery for reliable building extraction. Photogrammetric 

Engineering & Remote Sensing 74, 215-225. 

Li, H., Gu, H., Han, Y., Yang, J., 2007. Fusion of high-resolution 

aerial imagery and lidar data for object-oriented urban land-cover 

classification based on svm. Proceedings of the ISPRS Working 

Group IV/1:â€œDynamic and Multi-dimensional GIS, 179-184. 

Li, Y., Wu, H., An, R., Xu, H., He, Q., Xu, J., 2013. An improved 

building boundary extraction algorithm based on fusion of optical 

imagery and LiDAR data. Optik-International Journal for Light 

and Electron Optics 124, 5357-5362. 

Malpica, J.A., Alonso, M.C., Papí, F., Arozarena, A., Martínez 

De Agirre, A., 2013. Change detection of buildings from satellite 

imagery and lidar data. International journal of remote sensing 

34, 1652-1675. 

Pedergnana, M., Marpu, P.R., Mura, M.D., Benediktsson, J.A., 

Bruzzone, L., 2012. Classification of remote sensing optical and 

lidar data using extended attribute profiles. Selected Topics in 

Signal Processing, IEEE Journal of 6, 856-865. 

Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., 2005. Using 

the Dempster-Shafer method for the fusion of LIDAR data and 

multi-spectral images for building detection. Information fusion 

6, 283-300. 

Schenk, T., CsathA, B., 2002. Fusion of LIDAR data and aerial 

imagery for a more complete surface description. International 

Archives of Photogrammetry Remote Sensing and Spatial 

Information Sciences 34, 310-317. 

Sohn, G., Dowman, I., 2007. Data fusion of high-resolution 

satellite imagery and LiDAR data for automatic building 

extraction. ISPRS Journal of Photogrammetry and Remote 

Sensing 62, 43-63. 

Trinder, J., Salah, M., 2012. Aerial images and LiDAR data 

fusion for disaster change detection. ISPRS Annals of 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences 1, 227-232. 

Yousef, A., Iftekharuddin, K., 2014. Shoreline extraction from 

the fusion of LiDAR DEM data and aerial images using mutual 

information and genetic algrithms, Neural Networks (IJCNN), 

2014 International Joint Conference on. IEEE, pp. 1007-1014. 

Zabuawala, S., Nguyen, H., Wei, H., Yadegar, J., 2009. Fusion 

of LiDAR and aerial imagery for accurate building footprint 

extraction, IS&T/SPIE Electronic Imaging. International Society 

for Optics and Photonics, pp. 72510Z-72510Z-72511. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-589-2015

 
594

http://www.grss-ieee.org/community/technical-committees/data-fusion�
http://www.grss-ieee.org/community/technical-committees/data-fusion�



