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ABSTRACT: 

 

Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing 

subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In 

developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately 

designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these 

variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing 

a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires 

a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of 

urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework 

is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is 

used to extract the interrelations between the framework components. These interrelations is then taken into account in order to 

construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is 

considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal 

solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing 

the operation of subway systems was significant. 

 

 

1. INTORDUCTION 

Urban growth results in a significant increase in the distances 

between locations of people’s residence and locations of services 

such as education, occupation, shopping, health and recreation. 

This leads to a large number of daily commutes in urban areas; 

usually from home to work or school in early morning hours and 

in the opposite direction in the evenings. A suitably developed 

transportation infrastructure is a requirement to satisfy the huge 

amount of inter-cities travel demands. Nowadays, urban rail 

transportation systems (Subway Systems) are under 

consideration of urban transportation managers. Consumption of 

non-fossil fuels, reduction of the general operation costs as well 

as reliability and predictability of the travel times are significant 

advantages of the subway systems. Therefore, developments of 

the urban subway infrastructures are vital to improve satisfaction 

of both the transportation managers and passengers. 

 

In addition to the optimization of the rail route and locations of 

stations, design of a temporal schedule for train operations is an 

important task for effective use of the system. An appropriately 

designed timetable would certainly improves the quality of 

service in subway systems (Yang et al., 2014). Three common 

criteria including Total passenger travel times, Total Operation 

Costs and Energy Consumption of trains are in the main 

concentration of the policy makers as the service quality 

indicators. There are two-sided interrelations that exist between 

each of these criteria with the temporal schedule of subway 

systems. For example, total passenger travel times is considered 

as an effective factor in the timetable design process; on the other 

hand, total passenger travel times is affected by the timetable too. 

                                                                 
*  Corresponding author 
 

Similarly, total operation costs and energy consumption of trains 

have also the same interrelations with the temporal schedule of 

trains. 

 

Furthermore, these criteria are not positively correlated with each 

other. Therefore, train scheduling is considered as a multi-

objective optimization problem (Chang et al., 2000). Therefore, 

proposing a proper solution for subway scheduling that 

simultaneously optimizes all of the mentioned criteria has been 

always a controversial issue. However, finding a suitable solution 

for a phenomenon requires a perception of the phenomenon that 

can be gotten by a generalized representation of the real world. 

This representation is achieved with the help of a Modell. 

 

In this study, it is attempted to model temporal schedule of urban 

trains operation in a way that it could be applied in Multi-Criteria 

Subway Schedule Optimization (MCSSO) problems. In order to 

accomplish this, a conceptual framework is designed in Section 

3. The parameters that are related to subway scheduling are 

represented in the framework. These parameters are extracted by 

reviewing the literature. Then, an agent-based simulation 

environment is implemented in Section 4 that is a tool for 

performing further Sensitivity Analysis (SA). In this study, SA is 

used for understanding interrelations between the proposed 

framework components as well as their influences on the service 

quality indicators. In section 5, interrelations between the 

framework components in addition to a number of basic laws of 

physics are summarized in a set of mathematical functions which 

together represent a model for temporal schedule of subway 

systems. In order to evaluate performance of the developed 

model and how it can help to solve MCSSO problems, Tehran 
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subway line no. 1 is considered as the case study. By feeding the 

proposed model with the real data, the evaluation results are 

obtained that are provided in Section 6. Finally, conclusion of the 

study is provided in Section 7. 

 

2. RELATED WORKS 

A large number of researches has been performed in scheduling 

of transportation systems in the recent years. Scheduling 

passenger trains and urban trains are a major part of these studies. 

The large number of studies in this scope is because of the 

complexities of trains scheduling problems. In this regard, Yang 

et al. (2014) believed that physical complexities of subway 

systems is the reason that subway scheduling is one of the most 

controversial issues.  

 

Apart from initial solutions for trains scheduling which were 

usually manual, other studies which concentrated on the 

problems that are similar to multi-criteria train scheduling 

optimization are summarized in this section. In a number of 

studies, schedule optimization of trains was performed so that it 

reduces energy consumption or energy loss. They include 

proposing an algorithm which distributes travel times of the 

trains for the most efficient energy consumption (Su et al., 2013), 

developing a cooperative scheduling model to increase 

simultaneous accelerates and brakes of the consecutive trains 

(Nasri et al., 2010; Yang et al., 2013) and applying the genetic 

algorithm to decrease the simultaneous acceleration of trains in 

order to avoid maximum traction power of the system (Chen et 

al., 2005). 

 

Furthermore, some other studies focused on the multi-objective 

optimization of timetables for transportation systems in order to 

satisfy some criteria. Decreasing travel time and operation costs 

in high-speed rail systems (Chang et al., 2000), travel time and 

energy consumption in passenger trains (Ghoseiri et al., 2004; 

Chevrier et al., 2013; Hu et al., 2013), operation costs and energy 

consumption in a freight transportation system (Lau et al., 2013) 

and decreasing travel time, operation costs and energy 

consumption in a sustainable road network design problem (Kim 

et al., 2012) are some examples in this scope. 

 

In addition, there were some attempts in developing models and 

approches for trains scheduling. Shaoquan et al. (2009) 

represented an optimization model for initial schedule of 

passenger trains that is based on an improved genetic algorithm. 

Also, Sels et al. (2013) introduced an objective function for the 

total passenger travel times in subway systems in order to 

overcome the lack of mathematical modelling in a sustainable 

scheduling. Furthermore, Chang and Kwan (2005) evaluated the 

performance of the evolutionary algorithms including Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO) and 

Differential Evolution (DE) in trains schedule optimization 

problems. 

 

3. SUBWAY SCHEDULE OPTIMIZATION 

In this section, a conceptual framework is proposed for MCSSO 

that aggregates all the parameters which are related to the 

operation of subway systems. Structure of the proposed 

framework is inspired from the concept of Sustainable 

Transportation. With regard to the definition of Sustainable 

Development, three components including Social Equity, 

Economic Efficiency and Environmental Quality of the system 

should be considered in sustainable transportation planning (Kim 

et al., 2012). For each of these components, a corresponding 

category is considered in the MCSSO framework: Passengers, 

Operation Company and Environment. Then, the related 

parameters to the subway scheduling that are extracted by 

literature review are grouped in these three categories (Figure 1).  

 

Apart from categorization of the parameters, it is necessary for 

their interrelations to be represented in the framework. The 

interrelations are extracted by the sensitivity analysis and are 

provided in Table 1. In this table, the fact that if two parameters 

are correlated (positively or negatively) or not is shown. 

 

 

 

Figure 1. A conceptual framework for representing the parameters of MCSSO 
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Table 1. Interrelations between the proposed framework parameters 

 
Passengers Operation company Environment 

WT C B/A TT NV NC UC EC CE WE 

Passengers 

WT ---- ---- ---- + - - + - - - 

C ---- ---- + - + + - + + + 

B/A ---- + ---- ---- + + - + + + 

TT + - ---- ---- - - + - - - 

Operation 

company 

NV - + + - ---- + ---- + + + 

NC - + + - + ---- ---- ---- ---- ---- 

UC + - - + ---- ---- ---- ---- ---- ---- 

EC - + + - + ---- ---- ---- + + 

Environment 
CE - + + - + ---- ---- + ---- + 

WE - + + - + ---- ---- + + ---- 
 

 

4. AGENT-BASED SIMULATION 

In this study, the simulation environment is implemented in 

MATLAB 2013 in which each agent is defined as a matrix. Rows 

of the matrix for an agent, represent instances of that agent. The 

instances are identified by a unique ID number. On the other 

hand, each column shows a real-time state or behaviour of the 

instances. Table 2 represents the designed agents including their 

states and behaviours. Also, the permitted values of their states 

and behaviours are provided in the table.  

 

In the general procedure of the simulation, there is a variable 

which is named as “timeStep” whose job is to count the seconds. 

A main loop runs iteratively that corresponds to the seconds and 

updates states of the agents in each second. For example, in each 

iteration, the values for location, velocity and acceleration of the 

trains are updated according to the trains’ actions and some 

physics formulas. 

 

In addition, some service quality indicators which are defined in 

the simulation environment (Eq.1) are updated in the main loop 

as well. This helps us to get an estimation of the service quality 

at the end of the simulation procedure with which the 

performance of the system could be assessed. 

 

𝐼𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 = ∑ 𝑇𝑇𝑝

𝑃

𝑝=1

 

𝐼𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑇𝑜𝑇𝑖
𝑛,𝑛+1 ∗ (𝐼 ∗ 𝐶𝑇 − 𝑃𝑖

𝑛,𝑛+1)

𝐼

𝑖=1

𝑁

𝑛=1

 

𝐼𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝐸𝑖

𝐼

𝑖=1

 

(1) 

Where 𝑁, 𝐼 and 𝑃 are the numbers of stations, trains and 

passengers, respectively. In addition, 𝐶𝑇 is the capacity of each 

train. 𝑇𝑇𝑝 is the travel time for the passenger 𝑝 while 𝑇𝑜𝑇𝑖
𝑛,𝑛+1

 

and 𝑃𝑖
𝑛,𝑛+1

 are the travel time and the number of boarded 

passengers of the train 𝑖 between the stations 𝑛 and 𝑛 + 1. Also, 

𝐸𝑖 is the consumed energy of the train 𝑖. 
 

 

 

 

 

 

Table 2. The designed agents in the simulation environment 

Stations 

Specification of the Agent Type Permitted Values 

Incoming passengers 

rate (east platform) 
State 𝑁∗ 

Outgoing passengers 

rate (east platform) 
State 𝑁 

Incoming passengers 

rate (west platform) 
State 𝑁 

Outgoing passengers 

rate (west platform) 
State 𝑁 

Number of waiting 

passengers (east 

platform) 

State 𝑁 

Number of waiting 

passengers (west 

platform) 

State 𝑁 

Trains 

Specification of the Agent Type Permitted Values 

Location State 
(0, 𝑚𝑎𝑥𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

∈ 𝑅∗∗ 

Speed State (0, 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑) ∈ 𝑅 

Acceleration State 
(0, 𝑚𝑎𝑥𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)
∈ 𝑅 

Number of the boarded 

passengers 
State 𝑁 

Consumed energy State {𝑅 ≥ 0} 

ID of the last departed 

station 
State {𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝐼𝐷𝑠} 

Current action Behaviour 

{1 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 
2 = 𝐶𝑜𝑎𝑠𝑡𝑖𝑛𝑔, 
3 = 𝐵𝑟𝑎𝑘𝑖𝑛𝑔, 

4 = 𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔} 

The time remained for 

the current action 
State 𝑁 (𝑆𝑒𝑐𝑜𝑛𝑑𝑠) 

Direction of the movement State {−1, 1} 

Passengers 

Specification of the Agent Type Permitted Values 

Current Action Behaviour 
{0 = 𝑁𝑜𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔, 

1 = 𝑇𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔} 

Start time of the trip State 𝑁 (𝑆𝑒𝑐𝑜𝑛𝑑𝑠) 

ID of the origin station State {𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝐼𝐷𝑠} 
ID of the last passed station State {𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝐼𝐷𝑠} 
ID of the destination station State {𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝐼𝐷𝑠} 

ID of the carrier train State {𝑇𝑟𝑎𝑖𝑛𝑠 𝐼𝐷𝑠} 

Travel time until now State 𝑁 (𝑆𝑒𝑐𝑜𝑛𝑑𝑠) 

∗ 𝑁 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑠      ∗∗ 𝑅 = 𝑅𝑒𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 
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5. THE PROPOSED MODEL 

5.1 Decision Variables 

In addition to extracting interrelations between the parameters in 

the proposed framework (Section 3), the implemented agent-

based simulation environment was also used to choose 

appropriate Decision Variables for MCSSO. The simulation was 

performed in a number of scenarios in each of which the value of 

a specific variable is changed significantly. Those variables that 

caused more clear changes in the service quality indicators were 

chosen as decision variables (Table 3). 

 

Table 3. Decision Variables 

Parameter Notation 

Time of acceleration for the train 𝑖 between the 

stations 𝑛 and 𝑛 + 1 
𝑇𝑜𝐴𝑖

𝑛,𝑛+1
 

Time of braking for the train 𝑖 between the 

stations 𝑛 and 𝑛 + 1 
𝑇𝑜𝐵𝑖

𝑛,𝑛+1
 

Time of dwell for the train 𝑖 in the station 𝑛 𝑇𝑜𝐷𝑖
𝑛 

Acceleration rate for the train 𝑖 between the 

stations 𝑛 and 𝑛 + 1 
𝑎𝑖

𝑛,𝑛+1 

Braking acceleration rate for the train 𝑖 between 

the stations 𝑛 and 𝑛 + 1 
𝑏𝑖

𝑛,𝑛+1 

 

5.2 Mathematical Objective Functions 

The developed objective functions for Total passenger travel 

times (𝐹1), Total Operation Costs (𝐹2) and Energy Consumption 

(𝐹3) are represented in Eq. 2. Parameters of the model is 

explained in Tables 3 and 4. It should be noted that the total 

operation costs is considered based on the amount of the trains’ 

capacities which is remained empty between the stations. 

Therefore, 𝐹2 is the aggregated number of total boarded 

passengers that is going to be maximized. On the other hand, 𝐹1 

and 𝐹3 should be minimized. 

 

𝐹1 = ∑ ∑{
1

2
∗ 𝐵𝑖

𝑛 ∗ 𝑇𝑜𝐻𝑖,𝑖+1
𝑛 +

𝑑𝑛,𝑛+1

𝑎𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐴𝑖

𝑛,𝑛+1 +
1

2

𝑁−1

𝑛=1

𝐼

𝑖=1

∗ (𝑇𝑜𝐴𝑖
𝑛,𝑛+1 + 𝑇𝑜𝐵𝑖

𝑛,𝑛+1) + 𝑇𝑜𝐷𝑖
𝑛} 

𝐹2 = ∑ ∑ 𝐵𝑖
𝑛 ∗ 𝑇𝑜𝐷𝑖

𝑛

𝑁−1

𝑛=1

𝐼

𝑖=1

 

𝐹3 = ∑ ∑ (𝑀 + 𝑚 ∗
𝐶𝑇

2
)

𝑁−1

𝑛=1

𝐼

𝑖=1

∗ [
1

2
(𝑎𝑖

𝑛,𝑛+1 + 𝑓𝑘 ∗ 𝑔) ∗ 𝑎𝑖
𝑛,𝑛+1

∗ (𝑇𝑜𝐴𝑖
𝑛,𝑛+1)

2
) + 𝑓𝑘 ∗ 𝑔 ∗ 𝑎𝑖

𝑛,𝑛+1

∗ 𝑇𝑜𝐴𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐶𝑖

𝑛,𝑛+1

+ (𝑏𝑖
𝑛,𝑛+1 − 𝑓𝑘 ∗ 𝑔) ∗ 𝑇𝑜𝐵𝑖

𝑛,𝑛+1 ∗ (
1

2

∗ 𝑇𝑜𝐵𝑖
𝑛,𝑛+1 + 𝑎𝑖

𝑛,𝑛+1 ∗ 𝑇𝑜𝐴𝑖
𝑛,𝑛+1)] 

(2) 

5.3 Model Constraints 

Some constraints are required to be taken into account in order to 

avoid model failures. Eq. 3 shows the considered constraints in 

the model. In addition to Eq. 3, some other constraints are defined 

as the lower and upper boundaries of the decision variables. 

 𝑎𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐴𝑖

𝑛,𝑛+1 ≤ 𝑉𝑚𝑎𝑥 

 𝑎𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐴𝑖

𝑛,𝑛+1 = −𝑏𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐵𝑖

𝑛,𝑛+1
 

 1

2
𝑎𝑖

𝑛,𝑛+1(𝑇𝑜𝐴𝑖
𝑛,𝑛+1)

2
+

1

2
𝑏𝑖

𝑛,𝑛+1(𝑇𝑜𝐵𝑖
𝑛,𝑛+1)2 +

(𝑎𝑖
𝑛,𝑛+1 ∗ 𝑇𝑜𝐴𝑖

𝑛,𝑛+1) ∗ 𝑇𝑜𝐵𝑖
𝑛,𝑛+1 ≤ 𝑑𝑛,𝑛+1 

(3) 

Where 𝑉𝑚𝑎𝑥 is the maximum speed of the trains. 

 

Table 4. Definition of the Model Parameters 

Parameter Notation 

Number of stations N 
Distance between the stations 𝑛 and 𝑛 + 1 𝑑𝑛,𝑛+1 

Number of the active trains I 
Average weight of each train M 

Average weight of a passenger m 
Time of the move at a constant speed for the 

train 𝑖 between the station 𝑛 and 𝑛 + 1 
𝑇𝑜𝐶𝑖

𝑛,𝑛+1
 

Headway time between the two consecutive 

trains 𝑖 and 𝑖 + 1 in the station 𝑛 
𝑇𝑜𝐻𝑖,𝑖+1

𝑛  

Boarding passengers rate for the train 𝑖 in the 

station 𝑛 
𝐵𝑖

𝑛 

Capacity of each train 𝐶𝑇 

Coefficient of kinetic friction between the train 

wheels and the rail 
𝑓𝑘 

Gravitational acceleration 𝑔 

 

 

6. EVALUATION OF THE PROPOSED MODEL 

6.1 Case Study 

The proposed model was tested in Tehran subway line no.1 as the 

case study (Figure 2). Geospatial data as well as the descriptive 

data were gathered in a geo-dataset with the help of official 

Tehran GIS data, data of Tehran Urban and Suburban Railway 

Operation Company, Google Earth and a field survey. In 

addition, data for the current scheduling of Tehran subway line 

no.1 were obtained by the current timetable and also by 

measuring average time of acceleration, dwell or braking of the 

trains in the field survey. 

 

 

Figure 2. Study Area 
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6.2 Assumptions 

In the optimization process, some assumptions was considered 

for simplifications. It is assumed that operation of all the trains 

are similar between each two specific stations. 

 

6.3 Optimization Procedure: Results and Discussions 

An effective approach to deal with the multi-objective problems 

is optimization with the multi-objective evolutionary algorithms. 

Also, one of the most beneficial solutions for trains schedule 

optimizations are the Pareto-based methods (Ghoseiri et al., 

2004; Chang and Kwan, 2005). Therefore, in this study, NSGA-

II (Deb et al., 2002) is used to solve the subway scheduling 

problem. 

 

Using NSGA-II, a large number of solutions were obtained for 

the decision variables of the proposed model. To decrease the 

number of output data, Fuzzy Subtractive Clustering method was 

used to cluster the solutions. This method has two advantages: 

first, centre of the clusters are coincident on the Pareto front; 

second, the clusters are not crisply discrete. The radius of 

influence was set to 0.42 in the clustering process. The clustered 

solutions which were considered as the candidate schedules are 

provided in Table 5. Objective functions for the current schedule 

of Tehran subway line no. 1 is also represented in the table for 

further comparisons. 

 

Table 5. Objective Functions for the candidate schedules in 

comparison to the current schedule 

Solution 
Objective Functions 

Time (103) Cost (104) Energy (1010) 

1 8.521 -2.563 1.087 

2 7.355 -3.116 1.094 

3 7.752 -2.820 1.091 

4 1.671 -4.710 1.944 

5 2.018 -6.056 1.838 

6 6.045 -3.580 1.111 

7 6.594 -3.806 1.107 

8 1.889 -5.799 1.832 

9 5.385 -3.716 1.126 

10 1.902 -5.496 1.757 

11 4.872 -4.287 1.148 

Current 

Schedule 
3.115 -4.656 1.286 

 

To obtain a suitable vision, data in the above table are drawn in 

Figure 3. It is important to say that the objective functions of the 

candidate solutions has been normalized before they are drawn in 

order to avoid heterogeneity in the scales of the data. Each 

coloured line in the figure represents one of the cluster centers in 

the Table 5. 

 

 

Figure 3.Normallized Objective Functions for the Candidate 

schedules  

 

To choose the preferred schedule amongst the candidate 

schedules, it is required to consider preferences of the policy 

makers. Weighting the objective functions is the common way in 

this scope. In this study, Analytic Hierarchy Process (AHP) 

(Saaty, 1990) was applied as the weighting method. With regard 

to the obtained weights by the AHP method, the preferred 

schedule with the least weighted summation of the objective 

functions were chosen. The preferred schedule is compared with 

the current schedule in Table 6. The trains’ speed-time graph for 

both schedules are represented in Figure 4. 

 

Table 6. The Preferred Schedule 

Solution 

Objective Functions 

Time 

(103) 

Cost 

(104) 

Energy 

(1010) 

Preferred Schedule 2.922 -5.126 1.365 

Current Schedule 3.115 -4.656 1.286 

Percentage Change -6.20% -10.09% +6.14% 

 

 
Figure 4. The Speed-Time Graph for the Preferred Schedule in 

comparison to the Current Schedule 

As can be seen, the preferred schedule decreased the total 

passenger travel times and total operation costs by 6.2 and 10.1, 

respectively. This is the reason that the preferred schedule in 

Figure 4 (the blue solid line) took less time for the trains to travel 

from the origin station to the last station in comparison to the 

current schedule (the red dashed line).  

 

7. CONCLUSION 

The objective of this study was to propose a mathematical model 

for temporal schedule of urban trains. The motivation of 

developing such a model was to help the process of Multi-Criteria 

Subway Schedule Optimization (MCSSO). First, a conceptual 

framework was proposed that represents the parameters which 

are related to the subway schedule. Next, an agent-based 

simulation environment was developed to perform sensitivity 

analysis in order to extract the interrelations between the 

framework components. Then, by the help of the developed 

framework, a mathematical model for MCSSO was created. The 

decision variables and the objective functions in the model were 

defined in a way that they could be applied in a MCSSO process. 

 

Tehran subway line no.1 was considered as the case study to 

evaluate the performance of the proposed model. Operation of 

the system was modelled mathematically and multi-criteria 

optimization of its schedule was performed. Results of the 

evaluation show that using the suggested model outputted an 

acceptable distribution of Pareto solutions. Comparing the 

objective functions of the preferred schedule with those of the 

current schedule shows reductions in the total passenger travel 

times and total operation costs by 6.2 and 10.1 percent, 

respectively. By reviewing the results, the efficiency of the 

proposed model can be concluded. In addition, it is provable that 

the developed agent-based simulation was successful in the 

sensitivity analysis procedure. 
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However, some limitations have remained with the proposed 

model. The model may not be compatible with the real-time data 

and it needs more flexibility and adaptations for instantaneous 

decision makings. Therefore, improving the model so that it can 

be compatible with the real-time data would be considerable as 

the future work.  
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