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ABSTRACT: 

There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most 

of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the 

image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using 

Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as 

SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the 

used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie 

(Videogrammetry), 24 MP (UAV photogrammetry),  and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full 

HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for 

current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable 

to current workflows. 

 

 

1. INTRODUCTION 

Neuromorphic techniques include both electronic and bio-

inspired studies which enables the user to reach a much higher 

performance per watt in the compatible algorithms. Several 

companies such as Intel, Qualcomm and IBM are currently 

developing Neuromorphic chips so that the developers will be 

able to use the neural architecture in many studies. This 

improvement demands a significant change in algorithm's 

processing architecture. The resulting architecture can be 

implemented using customized CMOS chips. However, it also 

can be simulated using FPGA elements to define each neural unit 

and produce an equivalent to that CMOS chip with a lower speed. 

The Neuromorphic framework in this research is not restricted to 

SIFT operator, and can be used dynamically to compute any other 

mathematical operator, from comparison based (binary) 

operators like FREAK to bio inspired object recognition methods 

such as HMAX. Generally this method is based on neural units 

as computational elements used for operations such as averaging, 

Gaussian or comparison. The entire process is based on logic 

gates which are packed into a neural unit. There are four types of 

neural units which are developed using CMOS library which can 

be simulated with FPGAs. Based on the input data, image 

sequence vs. high resolution images, assignment of these neural 

units may vary to reach the maximum throughput.  

However this research attempts to purely speed up the algorithm 

but it's also presenting a scalable framework for SIFT operator to 

reach very high frames per second, since there is no delay in the 

processor for analysing input commands. This will results in 

several thousands of frames per second. This estimation is based 

on a computationally equivalent algorithm on CM1K Application 

Specific Integrated Circuit (ASIC) package which is reached to 

500 nano-seconds delay. The resulting algorithm can be used on 

a customized ASIC package as a co-processor in any 

computational scale. 

In the first look, a several thousand frames per second is not 

needed for many applications, but this huge improvement in 

performance results in much lower power consumption in 30-60 

fps range. Lowering the power consumption of the device can be 

useful in devices such as smart glasses, smartphones, security 

cameras and smart cars. Lowering the power consumption leads 

to low temperature, passive cooling and smaller package size of 

the computational unit. 

Development of such ASIC packages demands a great use of 

electronics which is not the main goal of this research, 

subsequently a mid-range FPGA is used to simulate the ASIC 

chip in SIFT computations which lowers the target FPS to several 

hundreds. There test images include 24 MP aerial images and HD 

close range image sequence. The processing time is then 

compared to several commercial photogrammetry softwares such 

as AGISoft to show the applicability of the research.    

 

2. LITERATURE REVIEW 

In this section, FPGA and ASIC applications in image processing 

are explained and some of commercial devices are mentioned. 

Then the FPGA implementation of SIFT and some of 

optimizations by other researchers are briefly described.  

 

2.1 ASIC and FPGAs for image processing 

Since an FPGA implements the logic required by an application 

by building separate hardware for each function, FPGAs are 

inherently parallel. This gives them the speed that results from a 

hardware design while retaining the reprogrammable flexibility 

of software at a relatively low cost. This makes FPGAs well 

suited to image processing, particularly at the low and 

intermediate levels where they are able to exploit the parallelism 

inherent in images.  

Nowadays this type of processing is found in many security, 

traffic and professional cameras, in which an FPGA is coupled to 

the CMOS directly. Altera Cyclone, Xilinx and Lattice are the 

most used FPGA brands in these cameras. 

ASICs are a little different than FPGA since they are optimized 

for a specific application, which leads to a more costly solution 

as well as a higher speed. An FPGA requires 20–40 times the 

silicon area of an equivalent ASIC but it is cheaper due to its 

added value in higher volumes of production. On the other hand, 

ASICs are much faster than equivalent FPGAs, consume less 

power and are smaller so that the form factor will be completely 

different. An example of ASICs are image processors such as 
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BIONZ in Sony, DIGIC in canon and EXPEED in Nikon 

cameras. 

There are ASICs used in other fields than RAW image processing 

such as CM1K in neural network development field also. Metaio 

also had an ASIC under development in order to handle 

Augmented Reality applications in image and location 

processing algorithms in the past years. 

 

2.2 FPGA SIFT 

There were many efforts in SIFT parallelization including [4 - 9] 

each of which have improved the algorithms performance by 

implementing it on a FPGA device. [10] used five element 

Gaussian filters and four iterations of CORDIC1 to calculate the 

magnitude and direction of the gradient. They also simplified the 

gradient calculation, with only one filter used per octave rather 

than one per scale. [11] made the observation that after down-

sampling the data volume is reduced by a factor of four. This 

allows all of the processing for the second octave and below to 

share a single Gaussian filter block and peak detect block. [12] 

took the processing one step further and also implemented the 

descriptor extraction in hardware. The gradient magnitude used 

the simplified formulation of eq. 1 rather than the square root, 

and a small lookup table was used to calculate the orientation. 

They used a modified descriptor that had fewer parameters, but 

was easier to implement in hardware. The feature matching, 

however, was performed in software using an embedded 

MicroBlaze processor. 

𝑄 = |𝐻| + |𝑉|     𝑒𝑞. 1 

 

3. PROPOSED METHOD 

In this section we’re going to describe the proposed method in 

detail including neural assignment, network size and reusability 

of the neurons.  

 

3.1 Neuron Types 

There are 5 types of electronic neurons defined in this network, 

each of which are capable of forming an independent part of 

network which can be used by specific functions of SIFT 

computation. The most important elements in any 

photogrammetric computation is multiplication as well as 

accumulation.  So, there are two types of electronic neurons for 

multiplication and accumulation in this network which are called 

N1 and N2 respectively. The third neural element is one of the 

most famous hardware elements in the past decade called MAC 

which is composed by combining several multiplication units 

with an accumulation unit. We have used a very fast 

implementation of MAC, [1], in our NP1 neural element.  

The fourth and fifth types of electronic neurons are not arithmetic 

functions, instead, they solve logical problems. N3 neural unit is 

a logical element and it can act as any logical gate including 

NAND, NOR, XOR … only by changing its inputs. N3 neural 

unit is also capable of producing constant true or false outputs 

independent of its main inputs. It will be used to adapt the neural 

network to algorithms other than SIFT which are not the subject 

of this paper.  

There is a need to comparators in any type of photogrammetric 

problems which are concerned about any type of thresholding. 

So, the last type of electronic neurons, so called N4 in this paper, 

is a 16-bit comparator which can be used in neighbourhood 

comparison in SIFT as well as any comparison operation in other 

algorithms such as FREAK. In the following sections the 

                                                                 
1 Coordinate Rotation Digital Computer, an iterative technique 

for evaluating elementary functions. [3] 

architectures of NP1-N4 and their input and output formats and 

measured delay are described. 

 

3.1.1 Multiply and Accumulator Architecture (NP1) 

 

NP1 contains the most important element in every 

photogrammetric calculation, including collinearity equations, 

fundamental matrix calculation, and descriptor generation. It’s 

originally a MAC unit which is developed by [1] and has eight 

inputs of 16 bit floating numbers. In order to fit the Gaussian 

kernel we’ll modify this unit to have ten inputs, which fits the 

five kernel size. It also generates one 16-bit output which is 

computed as fig. 1. 

 

 

Figure 1. MAC architecture 

  

This unit contains two sub units, N1 and N2. N1 is a 

multiplication unit which handles four parallel 16-bit 

multiplication operations. The N2 unit handles the summation of 

N1’s five outputs and have one 16-bit output.  

Computation delay of NP1, N1 and N2 are shown in table 1 with 

respect to the original eight input MAC developed in [1]. 

 

Table 1. NP1 neuron, MAC specifications 

 Multiplication Accumulation MAC 

Delay 

(ns) 

1.312 1.247 1.692 

Power 

(mw) 

- - 8.2 

Area 

(µ𝑚2) 

- - 12014 
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3.1.2 Comparator Architecture (N4) 

 

N4 Comparator unit plays an important role in every thresholding 

operation. We have used an implementation in [2] for N4 16-bit 

comparator unit. Its architecture has been shown in fig. 3. 

 

 

Figure 2. Comparator Architecture 

 

Specifications of 64-bit and 16-bit comparators used in N4 neural 

unit are shown in table 2. 

 

Table 2. N4 neuron, Comparator specifications 

 64 bit comparator 16 bit comparator 

Delay (ns) 0.86 ~0.62 

Power 

(mw) 

7.76 ~2 

Transistor 

count 

4000  ~1000 

 

3.2 Gaussian Convolution 

Any convolution algorithm consists of several Multiplication and 

Accumulation (MAC) operations, so the first section of our 

proposed neural network will be the network of NP1 neural 

elements. In order to increase usability of this section each NP1 

is divided to N1 and N2 neural units so that the multiplication 

and accumulation parts can be used separately.  

It's obvious that the size of NP1 network is highly dependent of 

its compatibility to image resolutions such as HD, full HD and so 

on. In the other hand, there are two limitations due to production 

and speed aspects of this problem. The production limitation is 

about the maximum number of transistors in a single chip, which 

limits the size of our computational network. The speed 

limitation concerns about number of computation cycles for total 

pixels in a single image. If the size of NP1 network is to small it 

will be needed to handle a single computation for too many 

cycles so that the total speed of entire chip will decrease.  

On the other hand, the exact assignment of each neural unit 

should be specified before determining the optimal size for 

computational networks. A convolution operation is dependent 

of the kernel size as well as the size of the image, in this case on 

of the image dimensions should be multiplication of number of 

the neurons in this network. To make it simple, we embedded the 

kernel size in each neural element. Due to the 5 x 5 kernel size 

each NP1 neuron should be able to handle 5 MACs in each cycle 

so that each NP1 neuron will have 10 inputs (5 pixels and 5 

weights) and one output. Assuming HD or full HD size of the 

input frame, the number of NP1 neurons should be the maximum 

number that can be multiplied to 1280 or 1920 which leads to 640 

NP1 neurons.  Using 640 NP1 neurons with a 5*5 separable 

Gaussian kernel, leads to 2*720*2 or 3*1080*2 cycles of 

computation for an HD or full HD image respectively. The last 2 

stands for 2 phases of convolution due to separate horizontal and 

vertical Gaussian kernel. Both kernel weights and pixel values 

for each level of image pyramid are stored in high speed memory, 

which can be either common DDR3 memory or the HBM type 

memory which is used in newly produced GPUs.  

 

Two Phase Convolution Controller

(including phase and Cycle and Level Counter)

NP1

NP1

NP1

NP1

NP1

:

NP1

10-inputs (16-bit)

5 weights, 5 pixels
1-output (16-bit)

Weights 

and 

Pixels

Updated Pixels

Image Pyramid(High Speed Memory)

 

Figure 3. Neuromorphic layout for Gaussian Convolution Phase 

 

3.3 Difference of Gaussians 

It is obvious that same window can't be used to detect key-points 

with different scale. It is possible with small corner but to detect 

larger corners larger windows are needed. Scale-space filtering is 

used to solve this. Laplacian of Gaussian is found for the image 

with various σ values in the scale-space filtering process. LoG 

acts as a blob detector which detects blobs in various sizes due to 

change in σ. In other words, σ acts as a scaling parameter. For 

e.g., in the above image, Gaussian kernel with low σ gives high 

value for small corner while Gaussian kernel with high σ fits well 

for larger corner. So, we can find the local maxima across the 

scale and space which gives us a list of (x,y,σ) values which 

means there is a potential key-point at (x,y) at σ scale. 

SIFT algorithm uses Difference of Gaussians which is an 

approximation of LoG. Difference of Gaussian is obtained as the 

difference of Gaussian blurring of an image with two different σ, 

let it be σ and kσ. This process is done for different octaves of the 

image in Gaussian Pyramid. Which is shown in figure… 
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Figure 4. Difference of Gaussians 

 

After Computation of Gaussian in each octave, the difference 

operation can be done by using the same array of adders (640 N2 

units) in NP1 network. We’ve used the adder architecture 

described in [1] because of its simple of implementation and high 

speed. 

 

Difference of Gaussian Controller

(Cycle and Level Counter)

N2

N2

N2

N2

N2

:

N2

5-inputs (16-bit) 1-output (16-bit)

Guaussian Pyramid

 Pixels
Updated Pixels

Image Pyramid (High Speed Memory)

 

Figure 5. Neuromorphic layout for Difference of Gaussians 

 

3.4 Comparison  

Once this DoG are found, images are searched for local extrema 

over scale and space. For e.g., one pixel in an image is compared 

with its 8 neighbours as well as 9 pixels in next scale and 9 pixels 

in previous scales. If it is a local extrema, it is a potential key-

point. It basically means that key-point is best represented in that 

scale which is shown in figure 6 and 7. 

 

 
Figure 6. Scale space extrema comparison 

 

Neighborhood Comparison Controller

(Cycle Counter)

N4

N4

N4

N4

N4

:

N4

2-inputs (16-bit) 1-output (2-bit)

Neighbor Pixels 2-bit array

Image Pyramid(High Speed Memory)

 

Figure 7. Neuromorphic layout for Neighbourhood Comparison 

 

3.5 Fine Scale Calculation 

Once potential key-points locations are found, they have to be 

refined to get more accurate results. They used Taylor series 

expansion of scale space to get more accurate location of 

extrema, and if the intensity at this extrema is less than a 

threshold value, it is rejected. 

DoG has higher response for edges, so edges also need to be 

removed. A concept similar to Harris corner detector is used for 

edge removal. So that, a 2x2 Hessian matrix (H) is used to 

compute the principal curvature and if the ratio of eigen values is 

greater than a threshold, so called edge threshold, that key-point 

is discarded. Using the edge threshold will eliminate any low-

contrast key-points and edge key-points and what remains is 

strong interest points. 
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3.6 Orientation Assignment 

In the SIFT operator, an orientation is assigned to each key-point 

to achieve invariance to image rotation. A neighbourhood is 

taken around the key-point location depending on the scale, and 

the gradient magnitude and direction is calculated in that region. 

An orientation histogram with 36 bins covering 360 degrees is 

created. (It is weighted by gradient magnitude and Gaussian-

weighted circular window with σ equal to 1.5 times the scale of 

key-point. The highest peak in the histogram is taken and any 

peak above 80% of it is also considered to calculate the 

orientation. It creates key-points with same location and scale, 

but different directions. It contribute to stability of matching. 

 

 
Figure 8. Orientation assignment 

 
3.6.1 Tangent Approximation 

 

Despite of any advantages in ASIC compatible algorithms, 

there’s always a limitation of using complex functions such as 

trigonometric operations. As it’s obvious, rotation assignment 

and descriptor generation parts of SIFT algorithm both need to 

compute inverse tangent of the horizontal to vertical gradient 

ratio which cannot be done directly. Fortunately, many functions 

have been approximated in embedded computing applications 

including the inverse tangent.  

There are several types of approximation with different 

accuracies and speeds. We have used the table 3 because of its 

simplicity, accuracy of 0.3 degrees and MAC compatibility. The 

detail of inverse tangent approximation is shown in table 3.  

 

Table 3. Approximate equation (radians) for tan (
𝐵

𝐴
) 

Octant Radians 

1st or 8th  
𝜃′ =  

𝐴𝐵

𝐴2 + 0.28125𝐵2 

2nd or 3rd  
𝜃′ =  

𝜋

2
−

𝐴𝐵

𝐵2 + 0.28125𝐴2 

4th or 5th  
𝜃′ =  𝜋 +

𝐴𝐵

𝐴2 + 0.28125𝐵2 

6th or 7th  
𝜃′ = −

𝜋

2
− 

𝐴𝐵

𝐵2 + 0.28125𝐴2 

 

3.6.2 Neural Assignment 

 

The first layer of NP1 neurons do the computation of image 

gradients by convolving [−1 0 1] kernel into the neighbourhood. 

Then NP1 neurons compute the first stage of orientation 

computation due to formula (). After that, the N1 neurons will do 

the dividing operation in formula () to finish the inverse tangent 

computation.  

In order to generate the orientation histogram, N4 neurons needed 

for comparison and categorization of computer orientations into 

32 bins each of which will cover 11.25 degrees in 360. 

Decreasing the number of bins in the orientation histogram leads 

to better compatibility of network size and also it’s recommended 

because of inverse tangent approximation. However, it could 

decreased to 16 bins to lower the orientation noise due to 0.3 

degrees accuracy, while it was also unknown in the robustness 

aspect of SIFT operator. Decreasing 36 bins to 32 also improve 

the performance by reducing computation cycles by 12.5 %.  

 

3.7 Descriptor Generation 

The descriptor generation controller acts exactly like orientation 

assignment section by doing the same computations in a 16*16 

neighbourhood containing 4*4 sub-blocks. For each sub-block, 8 

bin orientation histogram is created. So a total of 128 bin values 

are available. It is represented as a vector to form key-point 

descriptor. In addition to this, several measures are taken to 

achieve robustness against illumination changes, rotation etc. 

 

3.8 Performance Evaluation 

In this section, an overview of estimated performance, power 

consumption and area of the resulting chip layout is described. 

According to reusability of two layer MAC architecture as well 

as comparator neural units, there is a maximum number of 640 

MAC units in the first layer, 128 MAC units in the second layer 

and 4096 comparator units which will be used by controllers of 

each phase of the algorithm. The transistor count, power 

consumption and area of each controller is currently unknown but 

it will be much less than the entire neural units described here.  

 

3.8.1 Gaussian Convolution 

 

Having 3*1080*2 cycles of computation leads to 10 

microseconds of delay due to 1.6 ns delay of each NP1 (MAC) 

neuron. However, this delay should multiplied by 6.6, which is 

the number of total octaves and scales (4 and 5 respectively), 

gives about 66 microseconds of delay. Since each octave halves 

the image dimension, the total processing time consumed for all 

octaves should be 1 +
1

4
+

1

16
+

1

64
= 1.328125 which multiplies 

by the number of scale levels in each octave and gives slow down 

factor of about 6.6. According to the fact that this stage processes 

the massive number of pixels in high number of scale levels, it 

can be said that it will be the slowest part of the algorithm. On 

the other hand, this stage will not consume the highest power 

since it doesn’t use N4 neurons. The entire power consumption 

of this stage should be about 5 watt. 

 

3.8.2 Difference of Gaussians 

 

In order to calculate the number of processing cycles for total 

difference operations, assuming a full HD image, 4 octaves and 

5 scales, we will have total number of pixels in each octave, 2 

million, 500k, 125k and 31250. Assuming 4 subtraction 

operations in each octave leads to total number of pixels 

processed in each octave, 8 million, 2 million, 500k, and 125k. 

So the Total number of pixels processed in all octaves will be 

10625000. Having 640 NP1 neurons leads to about 16600 cycles. 

If we use N2 array to subtract two images, it gives about 1.2 ns 

of delay in each operation, which will produce about 19 

microseconds of delay. Using NP1 neurons will increase this 

delay to about 26 microseconds. So the entire DoG delay will be 

92 microseconds. 
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3.8.3 Comparison 

 

Assuming 3 scale levels in each octave, there are 26*3* total 

number of pixels in each scale level in each octave, leads to about 

207 millions of comparison operations. Having 4096 enables the 

chip to process about 157*26 comparison operations in each 

cycle. This leads to 50757 cycles of comparison and produces 

about 31 microseconds of delay. It will consume 8 watts of power 

since almost all of N4 neurons are active. 

 

3.8.4 Orientation Assignment 

 

One of the main power consumption bottle necks lies in 

orientation assignment and descriptor generation steps, which 

use both NP1 and N4 neurons simultaneously. However they will 

operate at very high speeds of processing since assuming 10k 

key-points versus 2 million pixels, gives a huge difference in 

processing cycles. Assuming 32 bins of histogram, a 4*4 

neighbourhood, and 8 directional gradients, leads to total number 

of 128 MACs of first layer, 32 MACs of the second layer and 32 

comparisons in each cycle for each key-point. Having 512 and 

128 MACs in two layers, limits the chip to process only 4 cycles 

simultaneously. The first layer of NP1 neurons will calculate 64 

MAC operations for total 16 pixels in 2 direction each of which 

contain 2 MAC operations to calculate the gradient. Then the first 

layer of NP1 neurons do the 4 operations including AB, A^2, B^2 

and base angle (depending on the octant) which use all 512 NP1 

neurons in the first layer for 8 key-points in each cycle (16 pixels 

and 2 directions, 4 calculations). Then the second layer calculates 

0.28125 multiplication into A^2 or B^2 depending on the octant 

which uses all 128 NP1 neurons in the second layer for 8 key-

points. Then the divide operation will be calculated using the 

second layer N1 neurons (in NP1 neurons). After this step, the 

N4 neurons are responsible to categorize the output orientation 

angle into the bins of orientation histogram. So there are 32 bins 

for each key-point and 32 N4 neurons are used for each key-

point. Having 4096 N4 neurons leads to 128 key-point in each 

cycle. Assuming 10k key-points in each image it leads to 7.5k 

cycles for NP1 neurons and about 80 cycles for 10k key-points. 

This leads to maximum delay of 12 microseconds for NP1 

neurons and 49.6 nanoseconds for N4 neural units. Due to huge 

cycle difference between NP1 and N4 neurons the power 

consumption of this stage will not be much higher than the NP1 

neurons themselves leading to 5-6 watts. 

 

3.8.5 Descriptor Generation 

 

In order to calculate power consumption and delay of this we 

have to calculate just to scale factors for NP1 and N4 neurons. 

NP1 neurons should calculate 16 times more than the orientation 

assignment process since there are 16 of these 4*4 

neighbourhoods in each key-point. On the other hand N4 neurons 

are 4 times less engaged with respect to orientation assignment 

section since orientation histogram is 8-bin instead of 32-bin. 

Due to low number of cycles of N4 neurons they will have almost 

no effect in delay because of their approximately 20 cycles while 

NP1 neurons slow down the entire process of MAC calculation 

by 1/16 scale factor which leads to 192 microseconds. As it’s 

obvious since we used the same NP1 and N4 arrays in multiple 

processes we faced a slowdown in comparison section for low 

number of N4 neurons while the exact number of N4 neurons 

were too much for orientation assignment and descriptor 

generation 

 

 

 

3.8.6 Resulting frame rate  

 

As the delay and power consumption of the resulting chip has 

been estimated in previous sections it will operate approximately 

in the range of 2000-3000 frames per second (327 micro seconds 

delay) of Full HD movie which is absolutely different from 

current photogrammetric processes. 

 

3.8.7 High resolution Image Sequence 

 

Since, all of evaluations in the previous sections were related to 

videogrammetry, with the assumption of Full HD video input, 

we're going to evaluate the resulting chip's performance on 24 

and 88 (Ultracam) megapixels image input which is very 

common in UAV and traditional photogrammetry. 

Assuming the number of key-points to resolution ratio is 

constant, the 327 µs delay will be about 4000 µs which leads to 

about 250 frames per second for 24 MP input. For Ultracam 

images, it should take about 14 ms to detect key-points and 

calculate descriptors in 88 MP which is equivalent to 68 frames 

per second. 

However, all of these numbers, are dependent on fabrication 

technology, which changes power consumption and speed. Due 

to the fact that NP1 and N4 neurons use a MAC implementation 

which is based on 150nm and 65nm technology respectively. Just 

for a comparison, table 4 shows some of the common processors 

with their fabrication technology.  

 

Table 4. Some common processors with their fabrication 

technology 

Processor Fabrication technology 

1st generation Core i3/i5/i7  45 nm 

6th generation Core i3/i5/i7  14 nm 

Snapdragon 820 (Qualcomm 

newest Mobile Processor)  

14 nm 

Snapdragon 400 (very 

common in mid-range 

smartphones)  

28 nm 

AMD Radeon Fury X (High 

End) 

28 nm 

AMD Radeon R7 260X (mid-

range) 

28 nm 

NVIDIA GTX 980 TI (High 

End) 

28 nm 

NVIDIA Tegra X1 (Desktop 

Class Mobile GPU) 

20 nm 

 

3.8.8 Chips area 

 

As it mentioned before, area of each NP1 neuron (MAC) is equal 

to 12000 µm^2 with 0.15 micron fabrication technology. Area of 

each N4 neuron also can be computed using a rough estimation 

with respect to a regular Core 2 Duo CPU with 291 million 

transistors and 143 mm^2 die size or 8800GT GPU with 754 

million transistors and 324 mm^2 die size. Each N4 neuron 

consists of approximately 1000 transistors which is equal to 429 

µm^2. Having 640 NP1 and 4096 N4 neurons leads to an 

approximate die size of 10 mm^2 with 0.15 and 0.065 micron 

fabrication technology for NP1 and N4 neurons respectively. By 

upgrading the fabrication technology for all neurons to 28nm the 

chip will be significantly smaller.  
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3.9 Future Works 

This papers is just a part from a bigger research named “Design 

of a Reconfigurable Neuromorphic Framework for 

Photogrammetric applications” which is PhD thesis of the author. 

There are several sections concerning about other algorithms like 

HMAX, FREAK, 2.5D and 3D SIFT which are all compatible to 

this type of computation. The resulting chip should be able to 

handle any similar algorithm at very high speeds or very low 

power consumptions.  

One of the other suggestions for continuing this line of research 

is to port photogrammetric equations, matching problem, 

classifiers and filtering algorithms to these neural elements which 

leads to change of the chip layout in network size and neural 

element aspects.  

There is another idea in these type of neural networks which 

concerns about learning algorithm, which can enable each neural 

element (consisting these basic elements such as N1, N2) to learn 

how to act in every algorithm.  

 

3.10 Conclusion 

In this research, an implementation of Neuromorphic SIFT for 

ASICs is described. The main difference of this method with the 

others is the ability to adapt to other algorithms such as HMAX 

and FREAK without major change in chip’s layout. This method 

can be used in any photogrammetric application by 

implementation on a FPGA or ASIC. A rough estimation of 

performance evaluation led to 3000 fps for Full HD movie, 250 

fps for 24 MP image sequence, 68 fps for Ultracam input images 

which can be a huge improvement for current photogrammetry 

workflows. As it mentioned before, the resulting chip's abilities 

will not be limited to SIFT, and it can be extended to HMAX, 

FREAK, and photogrammetric equations and so on with minor 

changes in the chip layout. 
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4. APPENDIX: 
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Figure 7. Neuromorphic layout for Descriptor Generation (Similar to orientation assignment) 
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