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ABSTRACT: 

 

Representation of data on the sphere is conventionally done using spherical harmonics. Making use of the Fourier series of the Legendre 

function in the SH representation results in a 2D Fourier expression. So far the 2D Fourier series representation on the sphere has been 

confined to a scalar field like geopotential or relief data. We show that if one views the 2D Fourier formulation as a representation in 

a rotated frame, instead of the original Earth-fixed frame, one can easily generalize the representation to any gradient of the scalar 

field. Indeed, the gradient and the scalar field itself are simply linked in the spectral domain using spectral transfers. We provide the 

spectral transfers of the first-, second- and third-order gradients of a scalar field in a local frame. Using three numerical examples based 

on gravity and geometrical quantities, we show the applicability of the presented formulation. 

 

 

1. INTRODUCTION 

The spherical harmonics are usually employed to represent 

geoscience data globally on the sphere. In particular, in the case 

of harmonic scalar fields like gravitational potential, since the 

spherical harmonics are the solutions of the Laplace equation in 

spherical coordinates, the most appropriate choice is the 

representation in terms of spherical harmonic series (Heiskanen 

and Moritz, 1967). Due to the characteristics of the spherical 

harmonics such as orthogonality and global support, this 

representation is of great advantage in all fields of geoscience. 

The explicit link in the spectral domain between the gradients of 

a scalar field and the field itself can only be established in the 

case of isotropic functionals like pure radial derivatives. 

An alternative formulation of a scalar field on the sphere is 

derived by expanding the Legendre function in the spherical 

harmonic representation as a series in sine and cosine terms (e.g., 

Schuster, 1903; Ricardi and Burrows, 1972; Colombo, 1981; 

Sneeuw and Bun, 1996). This alternative formulation is a 2D 

Fourier expression in terms of spherical longitude and latitude. 

The 2D Fourier methods are mostly appropriate for those 

applications on the sphere which the problem can not be solved 

explicitly using spherical harmonic series. For instance, the 

problem of global spherical harmonic analysis of anisotropic 

functionals can not be dealt with easily and explicitly using 

spherical harmonics. As an another example, the aliasing 

problem on the sphere is better solved and explained based on the 

Fourier series representation (Jekeli, 1996).  

The point about the 2D Fourier series representation in terms of 

spherical coordinates is that so far in the literaure it has been 

confined to a scalar field like geopotential or its radial derivatives 

(e.g., Gruber et al., 2011). 

In this paper, we provide a general Fourier formulation for 

representing the gradients of a scalar field on the sphere. In other 

words, a 2D Fourier series representation is presented that 

explicitly deals with any gradients of the field (Ghobadi-Far et 

al., 2015). In particular, we show that if the Fourier series 

                                                                 
*  Corresponding author 
 

representation is viewed as a representation in the rotated frame, 

instead of the original Earth-fixed frame, the generalization to 

any functional of the scalar field can be done easily. In order to 

derive the representation in the rotated frame the representation 

coefficients are employed (Wigner, 1959). 

This paper starts with an introduction to the representation 

coefficients and their application to rotate the spherical 

harmonics (section 2). In section 3, the formulation in the rotated 

frame is derived. Moreover, the spectral transfers of the gradients 

up to the third order are given in this section. Section 4 provides 

three numerical examples of the 2D Fourier series. Finally, the 

conclusions are drawn in the last section. 

 

2. REPRESENTATION COEFFICIENTS  

To transform the spherical harmonics to a rotated frame one can 

make use of the representation coefficients (Wigner, 1959). 

Sneeuw (1992) emplys of the representation coefficients to 

derive a representation of the gravitational functionals along the 

orbit in terms of Kepler elements. The along-orbit representation 

is obtained by rotating the spherical harmonics from Earth-fixed 

frame to a rotating one.  

In an almost similar way to (Sneeuw, 1992), we use the 

representation coefficients to obtain a 2D Fourier expression of a 

scalar field in spherical coordinates. 

Suppose the original and rotated frame are transformed into each 

other through the Eulerian rotation sequence: 

 

3 2 3
, , ( )( ) ( ) ( )R R R R       

(1) 

where the 
3

R  and 
2

R  matrices are the rotation matrices about 

the z- and y- axis, respectively. Then, the relation between the 

spherical harmonics in the original ( , )   and rotated 

( ', ')   frame is given by (Sneeuw, 1992): 
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(2) 

One can see that the spherical harmonics in the original frame are 

a linear combination of the same degree of those in the rotated 

frame. The representation coefficients D
nmk

are defined as: 

 

   , ,    im ikD e d enmk nmk
      

(3) 

 

with d
nmk

being the Wigner-d coefficients (Sneeuw, 1992). 

Inserting Eq. (2) in a spherical harmonic series provides the 

required representation in the rotated frame. 

   

3. FOURIER SERIES FORMULATION 

In order to obtain a 2D Fourier series representation of a scalar 

field the spherical harmonic series is transformed to a rotated 

frame. Thus, the starting point of the derivation is the series 

representation in spherical harmonics: 

 

   
1

, ,  , 

0

nN nGM R
V r K Ynm nm
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   
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    
  

 

(4) 

where  ,  (sin )  imY P enm nm
    and K

nm
are the 

spherical harmonic coefficients of the geopotential V . Please 

note that although the series expression of the geopotential is 

considered here, one can consider any other scalar field on the 

sphere.  

The 2D Fourier series formulation is obtained by setting three 

Euler angles as / 2, / 2, / 2          . 

Applying these rotations results in a rotated frame in which its 

equatorial plane coincides with the local meridian plane of the 

evaluation point. For more details, see (Ghobadi-Far et al., 2015). 

Thus, from Eq. 2 one derives the following formula for associated 

Legendre functions:  
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(5) 

 

Where a
nmk

 are the Fourier coefficients of the Legendre 

function given by: 

 

       /2 0k ma i d Pnmk nmk nk   

   

(6) 

with  0P
nk

being the associated Legendre function at the 

equator. 

Finally, substituting Eq. (5) in (4) gives us the 2D Fourier series 

formulation 
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(7) 

The aim of this paper is to introduce a general formulation that 

represents any functional of the scalar field V as a 2D Fourier 

expression. In fact, due to the special rotated frame chosen for 

each external point, one is able to link any functional of the scalar 

field to the field itself in the spectral domain using spectral 

transfers 
fh
nk

.  

Basically, the following formula can be used to represent any 

functional f of the scalar field as a 2D Fourier series. 
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where 
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with  '
0P

nk
being the first derivative of the associated 

Legendre function at the equator. 

The spectral transfers 
fh
nk

of the first-, second- and third-order 

gradients in a local frame are obtained by applying the 

differential operators of the functionals (e.g., Šprlák and Novák, 

2014) to equation (7) based on the mechanism and procedure 

presented by Sneeuw (2000). The spectral transfers of the 

mentioned gradients are given in Table (1) (Ghobadi-Far et al., 

2015). Note that the local frame used here is the Local North-

Oriented reference Frame (LNOF). The LNOF is a moving frame 

with its origin located at evaluation point and the x-, y- and z-axis 

pointing to the north, west and radially upward, respectively. 

As can be seen, only gradients that related to the field  V through 

an odd derivative with respect to the y-coordinate of the LNOF 

are associated with the 
*

a
nmk

coefficients (see Eq. (9)). For all 

other gradients the a
nmk

 coefficients are involved. 

 

The collection of spectral transfers listed in Table (1) can be  seen 

as a pocket guide that provides the spectral properties of the 

functionals of a scalar field. These spectral transfers can be used 

for spectral analyses on the sphere such as global spherical 

harmonic synthesis and analysis, contribution analysis, 

sensitivity analysis, etc. 
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Table 1. The spectral transfers of the first-, second- and third-

order gradients of a scalar field in LNOF 
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4. NUMERICAL EXAMPLES 

Three numerical examples are provided in this section to show 

the applicability of the Fourier series representation. For more 

examples see (Ghobadi-Far et al., 2015). 

The first example consists of ten gradients of the third-order 

tensor synthesized from the EIGEN-6C geopotential model 

(Shako et al., 2014) to degree and order 360. Results are shown 

in Figure (1). These maps show the spatial representation of each 

individual component of the third-order tensor. One can see the 

strength of some gradients compared to others. The third-order 

gradients can be used for upward/downward continuation of 

geodetic and geophysical data. For instance, one can employ the 

third-order gradients to do the analytical continuations of the 

second-order gradients in both radial and lateral directions. 

Finally, it is worth mentioning that comparing the spherical 

harmonic representation of the third-order gradients (Šprlák and 

Novák, 2014) to the Fourier series formulation reveals the 

compactness, efficiency and much less complexity of the 

gradients in the latter formulation. This is because in the  Fourier 

series representation each gradient is linked to the scalar field 

using a spectral transfer. 

The second example deals with the global spherical harmonic 

analysis of the Digital Elevation Models (DEM). For this 

purpose, we use ETOPTO1 global relief model which consists of 

1 arcmin land topography and ocean bathymetry (Amante and 

Barry, 2009) (see Figure (2)). The ETOPTO1 model is resampled 

to a grid with cell size of about 5 arcmin. Then, the global 

spherical harmonic analysis is carried out to determine the 

spherical harmonic coefficients of the relief data.  

The coefficients are estimated to degree and order 2000. The 

degree amplitude and individual coefficients are shown in the 

figure. Moreover, the difference between the original ETOPO1 

and the synthesized data are also shown. The RMS of the 

differences is 52 m globally. As can be seen, the borders between 

continents and oceans and also regions with high anomalies are 

highlighted in the differences. The slow decay of the signal 

power in the spectral domain is also visible in the results. 

The last example is concerned with the sensitivity analysis of 

some regularly-used functionals in physical geodesy. One can 

evaluate the sensitivity of a functional to a certain coefficient 

using the sensitivity analysis. See (Sneeuw, 2000) for more 

details. It should be emphasized that the sensitivity analysis is a 

forward modelling tool. In other words, it maps harmonic 

coefficients to the functionals. It does not provide any 

information about the recoverability of the potential coefficients 

(Sneeuw, 2000). 

As an example, a sensitivity analysis is employed for geoid 

undulations, gravity anomaly and deflections of the vertical 

based on the EIGEN-6C model to degree and order 500. The 

results are shown in Figure (3). The spectral transfers of the four 

functionals are obtained from those of the geopotential and its 

first derivatives. 

 As expected, the maximum signal size of the geoid undulations 

and gravity anomaly corresponding to the harmonic coefficients 

decays as the degree increases. The contribution of coefficients 

lower than 20 is the most for these two functionals. Moreover, 

the contribution of the harmonic coefficients varies 

homogeneously with degree  n , as it is expected due to the 

isotropic spectral transfers of these two functionals. 

However, in the case of vertical deflections the situation is 

different. The north-south vertical deflection is mostly sensitive 

to the zonal and near zonal coefficients. While, in the case of east-

west vertical deflection, the maximum signal size attributed to 

the sectorial and near sectorial coefficients is high and that of the 

near zonal coefficients is low. The results show that in order to 

model N-S vertical deflection, it is advantageous to use a 

geopotential model that the accuracy of its zonal and near zonal 

coefficients is better than others. Contrarily, a model with more 

accurate sectorial and near sectorial coefficients is superior if one 

aims to model E-W vertical deflection. 
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Figure 1. Maps of the third-order gradients synthesized from the EIGEN-6C model to degree and order 360. The GRS80 model is 

used as the normal field

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015 
International Conference on Sensors & Models in Remote Sensing & Photogrammetry, 23–25 Nov 2015, Kish Island, Iran

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W5-689-2015

 
692



 

 
Figure 2. a) ETOPO1 global relief model in m, b) difference between the original ETOPO1 and synthesized model from estimated 

coefficients in m, c) degree amplitude of the estimated coefficients and d) individual coefficients in log10  scale 

 

 

 
Figure 3. The results of the sensitivity analysis using EIGEN-6C model to degree and order 500 for a) geoid undulations in m, b) 

gravity anomaly in mGal, c) north-south vertical deflection in arcsec and d) east-west vertical deflection in arcsec. The quantities are 

the maximum signal size of the functionals contributed from each harmonic coefficient in log10  scale 

 

 

5. CONCLUSIONS 

The representation of geodetic or geophysical quantities in 

spherical coordinates using a 2D Fourier series has been confined 

in the literature to a scalar field like geopotential. In this paper, 

the 2D Fourier series is derived by transformation of the spherical 

harmonics from the Earth-fixed frame to a rotated frame. As a 

direct consequence, the Fourier series representation on the 

sphere is generalized to any linear functional of the scalar field. 

This generalization is done by using spectral transfers that relate 

the gradient of the field to the field itself. Each spectral transfer 

describes the spectral properties of the corresponding gradient 

which can be used for different spectral and spatial analyses on 

the sphere. 
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Three numerical examples were provided to show the 

applicability of the 2D Fourier series representation. They 

included global spherical harmonic synthesis of the third-order 

gradient tensor, global spherical harmonic analysis of a global 

relief model and sensitivity analysis of the geoid undulations, 

gravity anomaly, N-S and E-W deflections of the vertical.  

It should be mentioned that although the global spherical 

harmonic analysis is applied to a geometrical and isotropic 

quantity like DEM data, one can employ the representation 

presented in this paper to any isotropic to anisotropic functional. 

The global spherical harmonic analysis of anisotropic functionals 

makes this formulation a viable alternative to the spherical 

harmonic representation. 
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